簡易檢索 / 詳目顯示

研究生: 陳柏淳
Chen, Po-Chun
論文名稱: 一種用於預測-1計畫性核醣體轉譯軌道移轉訊號(-1PRF)在病毒基因組位置的新軟體並以cell-free方法驗證預測之-1PRF信號在Zika病毒基因組中的位置
A novel software to predict the -1 Programmed Ribosomal Frameshifting (-1PRF) signals in virus genome –predicted signals are validated by cell-free bioassays for Zika virus genome
指導教授: 楊立威
Yang, Lee-Wei
口試委員: 張功耀
Chang, Kung-Yao
艾曼紐
Salawu, Emmanuel
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 61
中文關鍵詞: -1計畫性核醣體轉譯軌道移轉茲卡病毒滑動序列髮夾結構偽結體外轉譯軌道移轉檢測法黃病毒屬
外文關鍵詞: -1 Programmed Ribosomal Frameshifting, PRF-Hunter, Zika virus, Slippery sequence, Hairpin, in vitro frameshifting assay, Flavivirus
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • -1計畫性核醣體轉譯軌道移轉(-1 programmed Ribosomal frameshifting, -1PRF)是病毒經常使用的一種特殊轉譯機制,該機制允許病毒在轉mRNA時移轉到另一個轉譯軌道 (reading-frame)上,也就是說,病毒可以用一條mRNA轉譯出一種以上的蛋白質。而轉譯軌道移轉的起始位置一般由一個滑動序列以及接在滑動序列後的特殊RNA二級結構所組成。這種轉譯機制,常見於病毒,如黃病毒(flavivirus)和SARS病毒,以及其他生物體,如大腸桿菌中。而本文的主要研究對象–茲卡病毒(Zika virus),屬於黃病毒(flavivirus)的一種,我們懷疑其轉譯也可能利用這種轉譯機制。若病毒學家能設計專一性的藥物來結合上述的特殊RNA二級結構,不論是使結構更加穩定或更加鬆散,就可以影響病毒軌道移轉效率,進而達成消滅病毒的效果。而這首要工作就是能夠有準確的軟體來預測轉譯軌道移轉的起始位置,包含接在滑動序列後能形成特殊RNA二級結構的序列位置。在這樣的動機下,我們提出了一種新的演算法來找尋基因組中的-1PRF特徵,包括找尋開放閱讀框架(Open reading frames),滑動序列以及滑動序列後特殊RNA二級結構的位置。
    結果顯示,我們的軟體PRF-Hunter (https://dyn.life.nthu.edu.tw/PRFH/) 能夠準確預測人類病毒中的-1PRF信號位置並將其排在所有類似訊號中的第一位,而目前已發表的最佳預測軟體KnotInFrame在我們的資料集(data sets)中,僅能部分做到。我們亦針對軟體在茲卡病毒株MR766中預測的-1PRF序列以同位素標定(35S)的體外轉譯軌道移轉檢測法(in vitro frameshifting assay)來測試序列有無-1PRF的發生,結果顯示,我們測試的預測序列確實能誘導-1PRF之發生。


    -1 programmed Ribosomal frameshifting (-1PRF) is a special translation mechanism often utilized by viruses. The mechanism allows the viruses to switch into another reading frame during translation. In other words, viruses can translate more than one protein product from a given mRNA containing the -1PRF signal. The starting position of the frameshift signal generally consists of a slippery sequence and a special mRNA secondary structure following the slippery sequence. Such a translation mechanism is common in viruses such as flavivirus and SARS viruses, as well as in other organisms such as E. coli. Zika virus, belonging to flavivirus, is also suspected to involve such a mechanism during translation. If specific drugs that bind aforementioned PRF-driven RNA secondary structures can be designed, no matter to make the structure more stable or looser, they could perturb the PRF efficiency and therefore inhibit the viral replication. To make this possible, the first measure is to accurately predict the starting position of the PRF signal, including the location of the sequence that forms the specific RNA secondary structure following the slippery sequence. Given this motive, we herein propose a new algorithm to locate the -1PRF signals in the genome, including determination of the longest open reading frames as well as locating/ranking the slippery sequences and the specific RNA secondary structures following which.
    The results show that our software PRF-Hunter (https://dyn.life.nthu.edu.tw/PRFH/) can accurately predict the position of the -1PRF signal in human viruses and rank it at the top among other similar signals. On the other hand, the best predictor ever published, KnotInFrame, can only achieve the same for a minor population of the examined dataset. One of the main reasons is that PRF-Hunter can predict the translational frame for the slippery sequence but KnotInFrame cannot; hence many false positives resulting from the latter. We also used in vitro cell-free frameshifting assay with radioactive 35S isotope-labeling to verify PRF-Hunter-predicted -1PRF signals in the Zika virus strain MR766.

    Abstract I Acknowledgment III Contents IV 1. Introductions 1 1.1 Background and components of -1 Programmed Ribosomal Frameshifting (-1PRF) 1 1.1.1 Background of -1 Programmed Ribosomal Frameshifting and its influence 1 1.1.2 Requisite Components of -1 Programmed Ribosomal Frameshifting 2 1.1.2.1 Slippery Sequence 2 1.1.2.2 RNA secondary structure – Hairpins and Pseudoknots 3 1.1.2.3 Other promoting elements and requirements 4 1.1.2.3.1 Spacer size 4 1.1.2.3.2 Shine-Dalgarno sequence 5 1.2 Open Reading Frames (ORFs) in the virus genome 5 1.3 Why Zika virus and its background 5 1.4 Phylogenetic tree of Zika virus strains 6 2. Materials and Methods 7 2.1 Overview of our protocols in finding -1PRF signals in a (viral) genome 7 2.2 Get Viruses’ genome data 9 2.2.1 Genome sequence data processed 9 2.2.2 Size of the genome sequence 9 2.3 Determine Open Reading Frames (ORFs) in the virus genome 9 2.4 Identify Components for the mechanism of -1 Programmed Ribosomal Frameshifting and other requirements 10 2.4.1 Slippery sequence 10 2.4.2 Spacer Size 10 2.4.3 RNA secondary structure – Hairpins and Pseudoknots 11 2.4.3.1 Stem and Loop features for RNA secondary structure 11 2.4.3.2 Features of Pairing in Hairpin and Pseudoknot 14 2.4.3.3 Naïve pattern searching algorithm to find the Hairpin and Pseudoknot 14 2.4.3.4 Hairpin and Pseudoknot Ranking by hydrogen bonds 15 2.5 Conservation analysis in Zika virus strains 16 2.5.1 Collection of genome sequence from different Zika virus strains 16 2.5.2 Genome Conservation among Zika virus strains 16 2.6 Use cell-free bioassays to validate predicted -1PRF sites in Zika virus 17 2.6.1 Plasmid construction 17 2.6.1.1 Polymerase Chain Reaction (PCR) 17 2.6.1.2 Recombinant DNA 17 2.6.1.3 Transformed & Cloning & Plasmid purification 18 2.6.2 In vitro transcription 18 2.6.2.1 Plasmid DNA preparation 18 2.6.2.2 RNA preparation for in vitro frameshifting assay 18 2.6.3 In vitro translation 19 2.6.3.1 Rabbit reticulocyte lysate 19 2.6.3.2 In vitro frameshifting analysis 19 3. Results 20 3.1 Predicted ORF agree with NCBI annotated CDS in eight genomes 20 3.2 Software prediction for -1 Programmed Ribosomal Frameshifting 21 3.2.1 -1PRF signals collected from Pseudobase and ViralZone 21 3.2.1.1 Software test results for human viruses -1PRF signals 32 3.2.1.2 Software test results for non-human viruses -1PRF signals 34 3.2.2 Compare predicted results between -1PRF-Hunter and KnotInFrame 36 3.2.3 Zika virus 39 3.2.3.1 Slippery sequence 39 3.2.3.2 Hairpin and Pseudoknots downstream the slippery sequence 40 3.3 Conservation results in different strains of Zika virus 42 3.3.1 Whole genome sequence alignment 42 3.3.2 Analyze of the top three ranking results in MR766 42 3.4 Results for Zika virus promising -1PRF sites by cell-free bioassays 45 3.4.1 Primers and vector for in vitro frameshifting assay 45 3.4.2 Results for in vitro frameshifting assay 46 3.5 Test sets of all human viruses 47 3.6 -1PRF-Hunter webserver 48 3.6.1 -1PRF-Hunter 48 3.6.2 Details of -1PRF-Hunter 48 3.6.2.1 Input page of -1PRF-Hunter 48 3.6.2.2 Output page of -1PRF-Hunter 49 4. Discussions 50 4.1 Types of pseudoknots 50 4.2 Comparison between -1PRF-Hunter and KnotInFrame 50 4.2.1 Definition of frame for slippery sequence 51 4.2.2 Different ways of ranking in two software 52 References 55 5. Appendix 60 5.1 Caption Alignment results for Zika virus different strains 60 5.1.1 Caption alignment result of Zika virus strain MR766 and strain ECYap 60 5.1.2 Caption alignment result of Zika virus strain MR766 and strain UF-1-2016 60 5.1.3 Caption alignment result of Zika virus strain MR766 and strain P6-740 60 5.1.4 Caption alignment result of Zika virus strain MR766 and strain ArD41519 61

    Alam, S. L., Atkins, J. F., &Gesteland, R. F. (2002). Programmed ribosomal frameshifting: Much ado about knotting! Proceedings of the National Academy of Sciences, 96(25), 14177–14179. https://doi.org/10.1073/pnas.96.25.14177
    An “elaborated” pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. (1993). Nucleic Acids Research, 21(25), 5838–5842. https://doi.org/10.1093/nar/21.25.5838
    Bidou, L., Denise, A., Forest, J., Froidevaux, C., Hatin, I., Rousset, J., &Termier, M. (2003). Towards a computational model for − 1 eukaryotic frameshifting sites, 19(3), 327–335. https://doi.org/10.1093/bioinformatics/btf868
    Blin, G., Denise, A., Dulucq, S., Herrbach, C., &Touzet, H. (2010). Alignments of RNA structures. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(2), 309–322. https://doi.org/10.1109/TCBB.2008.28
    Brierley-f, I., Jenner, A. J., &Inglis, S. C. (1992). Mutational Analysis of the “Slippery-sequence” Component of a Coronavirus Ribosomal Frameshifting Signal, 463–479.
    Brierley, I., Boursnell, M. E., Binns, M. M., Bilimoria, B., Blok, V. C., Brown, T. D., &Inglis, S. C. (1987). An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. The EMBO Journal, 6(12), 3779–3785. https://doi.org/10.1002/j.1460-2075.1987.tb02713.x
    Brister, J. R., Ako-Adjei, D., Bao, Y., &Blinkova, O. (2015). NCBI viral Genomes resource. Nucleic Acids Research, 43(D1), D571–D577. https://doi.org/10.1093/nar/gku1207
    Caliskan, N., Peske, F., &Rodnina, M.V. (2015). Changed in translation: MRNA recoding by -1 programmed ribosomal frameshifting. Trends in Biochemical Sciences, 40(5), 265–274. https://doi.org/10.1016/j.tibs.2015.03.006
    Chen, C., &Montelaro, R. C. (2003). Characterization of RNA Elements That Regulate Gag-Pol Ribosomal Frameshifting in Equine Infectious Anemia Virus. Journal of Virology, 77(19), 10280–10287. https://doi.org/10.1128/jvi.77.19.10280-10287.2003
    Chen, H., Bjerknes, M., Kumar, R., &Jay, E. (1994). Determination of the optimal aligned spacing between the shine - dalgarno sequence and the translation initiation codon of escherichia coli m RNAs. Nucleic Acids Research, 22(23), 4953–4957. https://doi.org/10.1093/nar/22.23.4953
    Chou, M. Y., &Chang, K. Y. (2009). An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of -1 ribosomal frameshifting. Nucleic Acids Research, 38(5), 1676–1685. https://doi.org/10.1093/nar/gkp1107
    DiGiacco, V., Marquez, V., Qin, Y., Pech, M., Triana-Alonso, F. J., Wilson, D. N., &Nierhaus, K. H. (2008). Shine-Dalgarno interaction prevents incorporation of noncognate amino acids at the codon following the AUG. Proceedings of the National Academy of Sciences, 105(31), 10715–10720. https://doi.org/10.1073/pnas.0801974105
    Dinman, J. D., Icho, T., &Wickner, R. B. (2006). A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proceedings of the National Academy of Sciences, 88(1), 174–178. https://doi.org/10.1073/pnas.88.1.174
    Firth, A. E., &Atkins, J. F. (2009). A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1’ may derive from ribosomal frameshifting. Virology Journal, 6, 1–6. https://doi.org/10.1186/1743-422X-6-14
    Firth, A. E., Chung, B. Y. W., Fleeton, M. N., &Atkins, J. F. (2008). Discovery of frameshifting in Alphavirus 6K resolves a 20-year enigma. Virology Journal, 5, 1–19. https://doi.org/10.1186/1743-422X-5-108
    Flanagan IV, J. F., Namy, O., Brierley, I., &Gilbert, R. J. C. (2010). Direct Observation of Distinct A/P Hybrid-State tRNAs in Translocating Ribosomes. Structure, 18(2), 257–264. https://doi.org/10.1016/j.str.2009.12.007
    Gris, D. (2013). Public Access NIH Public Access, 185(2), 974–981. https://doi.org/10.1038/mp.2011.182.doi
    Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., &Hofacker, I. L. (2008). The Vienna RNA websuite. Nucleic Acids Research, 36(Web Server issue), 70–74. https://doi.org/10.1093/nar/gkn188
    Haddow, A. D., Schuh, A. J., Yasuda, C. Y., Kasper, M. R., Heang, V., Huy, R., …Weaver, S. C. (2012). Genetic characterization of zika virus strains: Geographic expansion of the asian lineage. PLoS Neglected Tropical Diseases, 6(2). https://doi.org/10.1371/journal.pntd.0001477
    Hizi, A., Henderson, L. E., Copeland, T. D., Sowder, R. C., Hixson, C.V., &Oroszlan, S. (1987). Characterization of mouse mammary tumor virus gag-pro gene products and the ribosomal frameshift site by protein sequencing. Proceedings of the National Academy of Sciences, 84(20), 7041–7045. https://doi.org/10.1073/pnas.84.20.7041
    Hulo, C., DeCastro, E., Masson, P., Bougueleret, L., Bairoch, A., Xenarios, I., &LeMercier, P. (2011). ViralZone: A knowledge resource to understand virus diversity. Nucleic Acids Research, 39(SUPPL. 1), 576–582. https://doi.org/10.1093/nar/gkq901
    Jacks, T., Powert, M. D., Masiarzt, F. R., Luciwt, P. A., Barrt, P. J., &Varmus, H. E. (1987). Characterization of ribosomal frameshifting in, (lane 1), 3–6.
    Jacks, T., &Varmus, H. E. (1985). Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science, 230(4731), 1237–1242. https://doi.org/10.1126/science.2416054
    Johansson, M., Chen, J., O’Leary, S. E., Puglisi, J. D., Petrov, A., &Tsai, A. (2014). Dynamic pathways of −1 translational frameshifting. Nature, 512(7514), 328–332. https://doi.org/10.1038/nature13428
    Kai-Chun Chang, Emmanuel Oluwatobi Salawu, Yuan-Yu Chang, Jin-Der Wen, Lee-Wei Yang, (2019) Resolution-exchanged structural modeling and simulations jointly unravel that subunit rolling underlies the mechanism of programmed ribosomal frameshifting, Bioinformatics, 35(6), 945-952. https://doi.org/10.1093/bioinformatics/bty762
    Kim, K. H., &Lommel, S. A. (1998). Sequence element required for efficient -1 ribosomal frameshifting in red clover necrotic mosaic dianthovirus. Virology, 250(1), 50–59. https://doi.org/10.1006/viro.1998.9358
    Li, L., Wang, A. L., &Wang, C. C. (2001). Structural Analysis of the -1 Ribosomal Frameshift Elements in Giardiavirus mRNA. Journal of Virology, 75(22), 10612–10622. https://doi.org/10.1128/jvi.75.22.10612-10622.2001
    Loughran, G., Firth, A. E., &Atkins, J. F. (2011). Ribosomal frameshifting into an overlapping gene in the 2B-encoding region of the cardiovirus genome. Proceedings of the National Academy of Sciences, 108(46), E1111–E1119. https://doi.org/10.1073/pnas.1102932108
    Mäkinen, K., Naess, V., Tamm, T., Truve, E., Aaspõllu, A., &Saarma, M. (1995). 1-s2.0-S004268228571118X-main.pdf. Virology. https://doi.org/10.1006/viro.1995.1118
    Manktelow, E., Shigemoto, K., &Brierley, I. (2005). Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting. Nucleic Acids Research, 33(5), 1553–1563. https://doi.org/10.1093/nar/gki299
    Mathews, D. H., Sabina, J., Zuker, M., &Turner, D. H. (1999). Mathews 1999 - Mfold - Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure.pdf.
    Melian, E. B., Hinzman, E., Nagasaki, T., Firth, A. E., Wills, N. M., Nouwens, A. S., …Khromykh, A. A. (2010). NS1’ of Flaviviruses in the Japanese Encephalitis Virus Serogroup Is a Product of Ribosomal Frameshifting and Plays a Role in Viral Neuroinvasiveness. Journal of Virology, 84(3), 1641–1647. https://doi.org/10.1128/jvi.01979-09
    Moon, S., Byun, Y., Kim, H. J., Jeong, S., &Han, K. (2004). Predicting genes expressed via -1 and +1 frameshifts. Nucleic Acids Research, 32(16), 4884–4892. https://doi.org/10.1093/nar/gkh829
    Nixon, P. L., Rangan, A., Kim, Y. G., Rich, A., Hoffman, D. W., Hennig, M., &Giedroc, D. P. (2002). Solution structure of a luteoviral P1-P2 frameshifting mRNA pseudoknot. Journal of Molecular Biology, 322(3), 621–633. https://doi.org/10.1016/S0022-2836(02)00779-9
    Of, S., Astrovirus, T. H. E., &That, S. (n.d.). STUDIES OF THE ASTROVIRUS SIGNAL THAT, 323–330.
    Pennell, S., Manktelow, E., Flatt, A., Kelly, G., Smerdon, S. J., &Brierley, I. (2008). The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element. Rna, 14(7), 1366–1377. https://doi.org/10.1261/rna.1042108
    Plant, E. P. (2008). The role of programmed-1 ribosomal frameshifting in coronavirus propagation. Frontiers in Bioscience, Volume(13), 4873. https://doi.org/10.2741/3046
    Prüfer, D., Tacke, E., Schmitz, J., Kull, B., Kaufmann, A., &Rohde, W. (1992). Ribosomal frameshifting in plants: a novel signal directs the −1 frameshift in the synthesis of the putative viral replicase of potato leafroll luteovirus. The EMBO Journal, 11(3), 1111–1117. https://doi.org/10.1002/j.1460-2075.1992.tb05151.x
    Sharma, V., Prère, M. F., Canal, I., Firth, A. E., Atkins, J. F., Baranov, P.V., &Fayet, O. (2014). Analysis of tetra-and hepta-nucleotides motifs promoting-1 ribosomal frameshifting in Escherichia coli. Nucleic Acids Research, 42(11), 7210–7225. https://doi.org/10.1093/nar/gku386
    Snijder, E. J., Boon, J. A. de., Bredenbeek, P. J., Horzinek, M. C., Rijnbrand, R., &Spaan, W. J. M. (1990). The carboxyl-terminal part of the putative berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionary related. Nucleic Acids Research, 18(15), 4535–4542. https://doi.org/10.1093/nar/18.15.4535
    Staple, D. W., &Butcher, S. E. (2003). Solution structure of the HIV-1 frameshift inducing stem-loop RNA. Nucleic Acids Research, 31(15), 4326–4331. https://doi.org/10.1093/nar/gkg654
    Sung, D., &Kang, H. (1998). Mutational analysis of the RNA pseudoknot involved in efficient ribosomal frameshifting in simian retrovirus-1. Nucleic Acids Research, 26(6), 1369–1372. https://doi.org/10.1093/nar/26.6.1369
    Taufer, M., Licon, A., Araiza, R., Mireles, D., vanBatenburg, F. H. D., Gultyaev, A. P., &Leung, M. Y. (2009). PseudoBase++: An extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. Nucleic Acids Research, 37(SUPPL. 1), 127–135. https://doi.org/10.1093/nar/gkn806
    Theis, C., Reeder, J., &Giegerich, R. (2008). KnotInFrame: Prediction of -1 ribosomal frameshift events. Nucleic Acids Research, 36(18), 6013–6020. https://doi.org/10.1093/nar/gkn578
    vanBatenburg, F. H. D. (2000). PseudoBase: a database with RNA pseudoknots. Nucleic Acids Research, 28(1), 201–204. https://doi.org/10.1093/nar/28.1.201
    Varani, G., &McClain, W. H. (2000). The G·U wobble base pair: A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Reports, 1(1), 18–23. https://doi.org/10.1093/embo-reports/kvd001
    Wan, R., Sato, K., Kielbasa, S. M., Frith, M. C., &Horton, P. (2011). Adaptive seeds tame genomic sequence comparison. Genome Research, 21(3), 487–493. https://doi.org/10.1101/gr.113985.110
    Wang, L., Valderramos, S. G., Wu, A., Ouyang, S., Li, C., Brasil, P., …Cheng, G. (2016). From Mosquitos to Humans: Genetic Evolution of Zika Virus. Cell Host and Microbe, 19(5), 561–565. https://doi.org/10.1016/j.chom.2016.04.006
    White, K. H., Orzechowski, M., Fourmy, D., &Visscher, K. (2011). Mechanical unfolding of the Beet Western Yellow Virus - 1 frameshift signal. Journal of the American Chemical Society, 133(25), 9775–9782. https://doi.org/10.1021/ja111281f
    Wills, N. M., Moore, B., Hammer, A., Gesteland, R. F., &Atkins, J. F. (2006). A functional -1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene. Journal of Biological Chemistry, 281(11), 7082–7088. https://doi.org/10.1074/jbc.M511629200

    QR CODE