簡易檢索 / 詳目顯示

研究生: 周聖翰
SHENG-HAN CHOU
論文名稱: 粒子群演算法在具隨機效應的模型之應用
A Particle Swarm Optimization Approach for Random Effects Regression Model
指導教授: 張延彰
Yen-Chang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
中文關鍵詞: 粒子群演算迴歸潛在狄利克雷分配受制最大概似
外文關鍵詞: Particle Swarm Optimization, Regression, Latent Dirichlet Allocation, Restricted Maximum Likelihood
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的進步,衍生出許多由觀察自然界生物的習性而產生的演算法,而粒子群演算法(Particle Swarm Optimization,PSO),就是這麼產生的,在本文內主要是討論如何將PSO演算法,應用在常見具隨機效應的迴歸模型及潛在狄利克雷分配(Latent Dirichlet Allocation,LDA),由我們的演算法可看出,雖然在計算過程的部分能簡化很多,但由於粒子數增加相對的所要花費的時間也會長一些。


    With the progress of the eras, many algorithms generated by the observation of natural biological habits, so does Particle Swarm Optimization. In this paper, we discuss how the PSO algorithm used in common regression models with random effects and Latent Dirichlet Allocation. By our algorithm, it can be seen that even though the part of the calculation process can be simplified a lot, but spend more time because of relatively increase number of particles.

    1.動機與目的 1 2.文獻回顧 2 2.1 Particle Swarm Optimization 2 2.2 REML 2 2.3 LDA 3 3.迴歸應用 4 3.1 模型假設及參數設定 4 3.2 PSO演算法 11 4.PSO在潛在狄利克雷分配(Latent Dirichlet Allocation,LDA)的應用 20 4.1 LDA介紹 20 4.2 LDA模型及程式設定介紹 21 5.結論 27

    [1] Aldrich, John. (1997) R. A. Fisher and the making of maximum likelihood 1912–1922.
    Statistical Science 12 (3): 162–176. doi:10.1214/ss/1030037906. MR 1617519
    [2] Andrew Y. Ng,David M. BleIi ,Michael. Jordan and John Lafferty. (2003) Latent Dirichlet
    Allocation. Journal of M achine Learning Research ,3:993–1022.
    [3] C. W. Reynolds, (1987)Flocks, herds and schools: a distributed behavioral model, Computer
    Graphics, 21(4):25-34.
    [4] Chen H, Meigs JB, Dupuis J. (2013) Sequence kernel association test for quantitative
    traits in family samples. Genet Epidemiol, 37(2):196-204. PMID: 23280576; PMCID:
    PMC3642218.
    [5] David M. Blei, Francis Bach, Matthew D. Hoffman. Online Learning for Latent Dirichlet
    Allocation. Advances in Neural Information P rocessing Systems(NIP S) ,856-864,
    2010.
    [6] F. Heppner and U. (1990) Grenander, A stochastic nonlinear model for coordinated bird
    flocks, In S. Krasner, Ed, The Ubiquity of Chaos. AAAS Publications, Washington, DC.
    [7] J. Kennedy and R. C. Eberhart, (1995) Particle swarm optimization, in: Proc. IEEE
    Int. Conf. on Neural Networks, Perth, Australia, vol. 4, pp. 1942-1948.
    [8] Kilian Q. Weinberger, Matt J. Kusner, Nicholas I. Kolkin, Yu Sun, From Word
    Embeddings To Document Distances. T he International Conference on M achine Learning(ICML) , Washington University in St. Louis , 1 Brookings Dr., St. Louis,
    MO 63130, 2015.
    [9] Peterson, H. D. and Thompson, R. (1971)Recovery of inter-block information when
    block sizes are unequal. Biometrika, 58, 545-54.
    [10] R. C. Eberhart, (1995)J. Kennedy, A new optimizer using particle swarm theory, in:
    Proc. IEEE Int. Symposium on Micro Machine and Human Science, Nagoya, Japan, pp.
    39-43.
    [11] Y. Shi, Eberhart R. C. (1998) A modified particle swarm optimizer.
    IEEE International Conference, Anchorage, 69-73.
    [12] 陳佩君 (民 92)。利用貝氏統計推論變異數之 REML 估計值(國立台灣大學碩士論
    文)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE