簡易檢索 / 詳目顯示

研究生: 曾令宇
Tseng, Ling-Yu
論文名稱: PIPPON: 改進電源分佈網路之阻抗預測使用極點候選網路
PIPPON: Improve Impedance Prediction of Power Distribution Network Using Pole Proposal Network
指導教授: 張世杰
Chang, Shih-Chieh
口試委員: 何宗易
Ho, Tsung-Yi
陳添福
Chen, Tien-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 25
中文關鍵詞: 深度學習電源分佈網路阻抗預測
外文關鍵詞: Deep learning, Power distribution network, Impedance Prediction
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然對具有不規則板形和多層堆疊的印刷電路板(PCB)進行電源分布網路(PDN)的建模與阻抗曲線模擬是一項艱鉅的任務,但這仍是電源分布網路(PDN)設計和性能評估的關鍵過程。在特定頻率範圍內,PCB板的阻抗曲線需要滿足目標阻抗的要求。本文提出了一種新的深度學習方法PIPPON來預測PDN阻抗,該方法包含了一個專門處理阻抗曲線極點範圍的候選網絡(proposal network)。實驗結果顯示,PIPPON不僅比先前的深度學習方法能產生更準確的阻抗預測結果,還保持了與先前方法同等級的快速計算時間。同時,因PIPPON專注於阻抗的極點部分,使得在判斷阻抗曲線是否符合目標阻抗要求時擁有更為準確的判定。


    While it is a difficult task to model and simulate a power distribution network’s (PDN) impedance profile for printed circuit boards (PCBs) with irregular board shapes and multi-layer stackup, it is a crucial process for the design and performance evaluation of the PDN. This paper proposes a new deep learning method PIPPON for PDN impedance prediction which contains a proposal network that specializes in the prediction of impedance profile in the range around a pole point. The result shows that PIPPON not only produces more accurate results (with 30% relative error reduction) than the previous deep learning method but also maintains the same level of fast computation time as the previous method. Meanwhile, PIPPON focuses on impedance pole points resulting in a more accurate picture of whether the impedance profile meets the target impedance requirement.

    Contents Chapter 1. Introduction------------ 1 Chapter 2. Related Works----------- 4 Chapter 3. The Proposed Framework-- 7 Chapter 4. Experimental Results--- 14 Chapter 5. Conclusion------------- 22 References------------------------ 23

    [1] Sergio Franco. (2018, July). Playing with poles and zeros. EDN. https://www.edn.com/playing-with-poles-and-zeros/
    [2] J. Kim, L. Ren and J. Fan, "Physics-Based Inductance Extraction for Via Arrays in Parallel Planes for Power Distribution Network Design," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 9, pp. 2434-2447, Sept. 2010, doi: 10.1109/TMTT.2010.2058278.
    [3] J. Kim, K. Shringarpure, J. Fan, J. Kim and J. L. Drewniak, "Equivalent Circuit Model for Power Bus Design in Multi-Layer PCBs With Via Arrays," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 2, pp. 62-64, Feb. 2011, doi: 10.1109/LMWC.2010.2100079.
    [4] L. Wei et al., “Plane-Pair PEEC Model for Power Distribution Networks With SubMeshing Techniques,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 3, pp. 733¬ 741, March 2016.
    [5] Y. Zhang, G. Feng, and J. Fan, “A Novel Impedance Definition of a Parallel Plate Pair for an Intrinsic Via Circuit Model,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3780-3789, Dec. 2010.
    [6] M. Friedrich and M. Leone, “Boundary-Element Method for the Calculation of Port Inductances in Parallel-Plane Structures,” IEEE Trans. Electromagn. Compat., vol. 56, no. 6, pp. 1439-1447, Dec. 2014.
    [7] C. M. Schierholz, K. Scharff, and C. Schuster, “Evaluation of Neural Networks to Predict Target Impedance Violations of Power Delivery Networks,” 2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), Montreal, QC, Canada, 2019.
    [8] S. Sourav, A. Roy, Y. Cao, and S. Pandey, “Machine Learning Framework for Power Delivery Network Modelling,” 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Reno, NV, USA, 2020, pp. 10-15.
    [9] H. Park et al., “Deep Reinforcement Learning-Based Optimal Decoupling Capacitor Design Method for Silicon Interposer-Based 2.5-D/3-D ICs,” IEEE Trans. Compon. Packaging Manuf. Technol, vol. 10, no. 3, pp. 467-478, March 2020.
    [10] R. Cecchetti et al., “Effective PCB Decoupling Optimization by Combining an Iterative Genetic Algorithm and Machine Learning,” Electronics 9.8, 1243, 2020.
    [11] L. Zhang, Jack Juang, Zurab Kiguradze, Bo Pu, Shuai Jin, Songping Wu, Zhiping Yang, and Chulsoon Hwang, “Fast PDN Impedance Prediction Using Deep Learning,” International Journal of Numerical Modelling: Electronic Networks, Devices, and Fields, vol. 10, issue 2, March/April 2022.
    [12] L. Zhang et al., "Efficient DC and AC Impedance Calculation for Arbitrary-Shape and Multilayer PDN Using Boundary Integration," in IEEE Transactions on Signal and Power Integrity, vol. 1, pp. 1-11, 2022, doi: 10.1109/TSIPI.2022.3164037.
    [13] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440-1448, doi: 10.1109/ICCV.2015.169.
    [14] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017, doi: 10.1109/TPAMI.2016.2577031.
    [15] Ioffe Sergey and Szegedy Christian. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning. ACM, New York, NY, 448–456.
    [16] Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853.

    QR CODE