研究生: |
戴博媛 Dai, Bo-Yuan |
---|---|
論文名稱: |
商用型氣體感測器之智能製茶體系監測與系統校正研究 Intelligent tea-making system monitoring and system calibration of commercial gas sensors |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: |
馮國華
Feng, Guo-Hua 陳柏安 Chen, Po-An |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 電子鼻 、感測器陣列 、部分氧化茶葉 、訊號飄移校正 |
外文關鍵詞: | electronic nose, sensor array, partially fermented tea leaves, signal drift calibration |
相關次數: | 點閱:36 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用電子鼻的感測原理配合部分氧化茶葉的製程流程,有鑑於部分氧化茶至今尚未有自動化生產的方式,利用電子鼻將氣味濃度下降比例量化的方式來掌握製茶時的氧化時長和炒菁時機,並且對不同電子鼻間進行回歸校正分析以提高量測氣體時的重現性和一致性為研究目標,期望建立一套針對茶葉氣體之智慧監測系統。
從熱脫附氣相沉積質譜儀的茶葉氣味分析結果中,發現茶葉的氣味隨著製程階段的遞進,可以區分為草菁氣味和花香氣味,這些氣味主要來源自於茶菁自身的氧化反應,並且從量測實驗的響應數值發現感測器TGS2603和SP3S-AQ2,這兩種型號的氣體感測器分別對於花香氣味和草菁氣味有著高度響應程度,然而當氣味複雜度增加,金屬氧化物半導體氣體感測器會出現訊號飄移與不一致的現象,可以使用簡單回歸分析普通最小平方估計法進行加權線性回歸(Weighted Linear Regression)方程式,作為金屬氧化物半導體感測器的校正方程式。
This paper uses the sensing principle of the electronic nose to cooperate with the process flow of partially fermented tea. In view of the fact that there is no automatic production method for partially fermented tea, the electronic nose is used to quantify the reduction ratio of the odor concentration to grasp the fermentation time and duration of tea manufacturing. The timing of shaking green tea, and performing regression correction analysis on different electronic noses to improve the reproducibility and consistency of gas measurement is the research goal. It is expected to establish a set of intelligent monitoring system for tea odor in process.
From the tea odor analysis results of thermal-desorption gas chromatography–mass spectrometry, it is found that the odor of tea can be divided into grassy green smell and floral smell with the progress of the process stage. These smells above mainly come from the fermentation reaction of tea green tea itself.According to the response value of the measurement experiment, it is found that the sensors TGS2603 and SP3S-AQ2, these two types of gas sensors have a high degree of response to the scent of flowers and green grass, respectively. However, when the complexity of the odor increases, the metal oxide semiconductor sensors will lead to a phenomena of signal drift and inconsistency. Simple regression analysis and ordinary least square estimation method can be used to carry out the weighted linear regression equation, which can be used as the correction equation for metal oxide semiconductor sensors.
[1] LEE, Duk-Dong; LEE, Dae-Sik. Environmental gas sensors. IEEE sensors journal, 2001, 1.3: 214-224.
[2] MOSELEY, P. T. Solid state gas sensors. Measurement Science and technology, 1997, 8.3: 223.
[3] LIU, Xiao, et al. A survey on gas sensing technology. Sensors, 2012, 12.7: 9635-9665.
[4] NAGLE, H. Troy; GUTIERREZ-OSUNA, Ricardo; SCHIFFMAN, Susan S. The how and why of electronic noses. IEEE spectrum, 1998, 35.9: 22-31.
[5] 周瑞福,” 費加羅半導體感測器基本原理與應用”, 三聯技術110期
[6] EISELE, I.; DOLL, T.; BURGMAIR, M. Low power gas detection with FET sensors. Sensors and Actuators B: Chemical, 2001, 78.1-3: 19-25.
[7] PENZA, M., et al. SAW chemical sensing using poly-ynes and organometallic polymer films. Sensors and Actuators B: Chemical, 2001, 81.1: 88-98.
[8] ALBERT, Keith J., et al. Cross-reactive chemical sensor arrays. Chemical reviews, 2000, 100.7: 2595-2626.
[9] SAUERBREY, G. J. Z. P. The use of quartz oscillators for weighing thin layers and for microweighing. Z. Fur. Phys., 1959, 155: 206-222.
[10] BALLANTINE JR, D. S., et al. Acoustic wave sensors: theory, design and physico-chemical applications. Elsevier, 1996.
[11] SCHALLER, Emmanuelle; BOSSET, Jacques O.; ESCHER, Felix. ‘Electronic noses’ and their application to food. LWT-Food Science and Technology, 1998, 31.4: 305-316.
[12] DAVIES, Simon; SPANEL, Patrik; SMITH, David. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney international, 1997, 52.1: 223-228.
[13] YU, Fei, et al. The Third International Symposium on Electronic Commerce and Security Workshops (ISECS 2010). 2010.
[14] SHEN, Chih-Hsiung; YEAH, Jun-Hong. Long term stable Δ-Σ NDIR technique based on temperature compensation. Applied Sciences, 2019, 9.2: 309.
[15] ZIMMER, C. M.; KALLIS, K. T.; GIEBEL, F. J. Micro-structured electron accelerator for the mobile gas ionization sensor technology. Journal of Sensors and Sensor Systems, 2015, 4.1: 151-157.
[16] ARSHAK, Khalil, et al. A review of gas sensors employed in electronic nose applications. Sensor review, 2004.
[17] SUTHERLAND, Ken. Gas chromatography/mass spectrometry techniques for the characterisation of organic materials in works of art. Physical Sciences Reviews, 2018, 4.6: 20180010.
[18] SYSOEV, Victor V., et al. A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano letters, 2007, 7.10: 3182-3188.
[19] KRAMER, Kirsten E., et al. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array. Analytica chimica acta, 2007, 584.1: 78-88.
[20] SEIYAMA, Tetsuro, et al. A new detector for gaseous components using semiconductive thin films. Analytical Chemistry, 1962, 34.11: 1502-1503.
[21] SEIYAMA, Tetsuro; KAGAWA, Shuichi. Study on a Detector for Gaseous Components Using Semiconductive Thin Films. Analytical chemistry, 1966, 38.8: 1069-1073.
[22] SHAVER, P. J. Activated tungsten oxide gas detectors. Applied Physics Letters, 1967, 11.8: 255-257.
[23] NIKOLIC, Maria Vesna. An overview of oxide materials for gas sensors. In: 2020 23rd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS). IEEE, 2020. p. 1-4.
[24] WANG, Chengxiang, et al. Metal oxide gas sensors: sensitivity and influencing factors. sensors, 2010, 10.3: 2088-2106.
[25] DEVI, G. Sarala; MANORAMA, S.; RAO, V. J. High sensitivity and selectivity of an SnO2 sensor to H2S at around 100° C. Sensors and Actuators B: Chemical, 1995, 28.1: 31-37.
[26] MORRISON, S. Roy. Selectivity in semiconductor gas sensors. Sensors and actuators, 1987, 12.4: 425-440.
[27] CLAVIJO, William P. Low-temperature Fabrication Process for Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors. Virginia Commonwealth University, 2017.
[28] 蕭文澤; 薛丁仁; 黃國政. 金屬氧化物半導體氣體感測器用材料回顧. 科儀新知, 2020, 223: 63-76.
[29] HO, Chi-Tang; ZHENG, Xin; LI, Shiming. Tea aroma formation. Food Science and Human Wellness, 2015, 4.1: 9-27.
[30] HOWARD, G. E. The volatile constituents of tea. Food chemistry, 1979, 4.2: 97-106.
[31] 林書妍、陳國任,”茶葉的香氣分析”,茶葉專訓84期,2013
[32] DALLUGE, Joseph J.; NELSON, Bryant C. Determination of tea catechins. Journal of Chromatography A, 2000, 881.1-2: 411-424.
[33] CEVOLI, C., et al. Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC–MS analysis of volatile compounds. Food Chemistry, 2011, 129.3: 1315-1319.
[34] MUSATOV, V. Yu, et al. Assessment of meat freshness with metal oxide sensor microarray electronic nose: A practical approach. Sensors and Actuators B: Chemical, 2010, 144.1: 99-103.
[35] YANG, Ziyin; BALDERMANN, Susanne; WATANABE, Naoharu. Recent studies of the volatile compounds in tea. Food Research International, 2013, 53.2: 585-599.
[36] GONZALEZ, J. G.; COGGON, P. t; SANOERSON, G. W. A Research Note BIOCHEMISTRY OF TEA FERMENTATION: FORMATION OF t‐2‐HEXENAL FROM LINOLENIC ACID. Journal of Food Science, 1972, 37.5: 797-798.
[37] DUTTA, Ritaban, et al. Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sensors and actuators B: Chemical, 2003, 94.2: 228-237.
[38] CHEN, Quansheng, et al. Classification of tea category using a portable electronic nose based on an odor imaging sensor array. Journal of pharmaceutical and biomedical analysis, 2013, 84: 77-83
[39] SHARMA, Prolay, et al. A quartz crystal microbalance sensor for detection of geraniol in black tea. IEEE sensors journal, 2014, 15.2: 1178-1185.
[40] YANG, Yanqin, et al. Aroma dynamic characteristics during the drying process of green tea by gas phase electronic nose and gas chromatography-ion mobility spectrometry. LWT, 2022, 154: 112691.
[41] GARDNER, Julian W.; BARTLETT, Philip Nigel. Electronic noses: principles and applications. Oxford University Press on Demand, 1999.
[42] SCOTT, Simon M.; JAMES, David; ALI, Zulfiqur. Data analysis for electronic nose systems. Microchimica Acta, 2006, 156: 183-207.
[43] BERNA, Amalia. Metal oxide sensors for electronic noses and their application to food analysis. Sensors, 2010, 10.4: 3882-3910.
[44] WOLFRUM, Edward J., et al. Calibration transfer among sensor arrays designed for monitoring volatile organic compounds in indoor air quality. IEEE Sensors Journal, 2006, 6.6: 1638-1643.
[45] KASHWAN, K. R.; BHUYAN, M. Robust electronic-nose system with temperature and humidity drift compensation for tea and spice flavour discrimination. In: 2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research. IEEE, 2005. p. 154-158.
[46] BOUVERESSE, E.; MASSART, D. L. Standardisation of near-infrared spectrometric instruments: A review. Vibrational Spectroscopy, 1996, 11.1: 3-15.
[47] BOUVERESSE, E., et al. Standardization of near-infrared spectrometric instruments. Analytical Chemistry, 1996, 68.6: 982-990.
[48] SJÖBLOM, Jonas, et al. An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemometrics and Intelligent Laboratory Systems, 1998, 44.1-2: 229-244.
[49] ZHANG, Lei, et al. On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality. Sensors and Actuators B: Chemical, 2011, 160.1: 899-909.
[50] ZHANG, Lei, et al. Standardization of metal oxide sensor array using artificial neural networks through experimental design. Sensors and Actuators B: Chemical, 2013, 177: 947-955.
[51] 陳志文; 林群富; 黃泰綸. 近紅外光譜儀之開發及應用. 科儀新知, 2007, 160: 80-90.
[52] 陳榮坤; 楊純明. 簡介近紅外光譜儀在化學分析上的應用. 技術服務, 2004.
[53] LAREF, Rachid, et al. Orthogonal signal correction to improve stability regression model in gas sensor systems. Journal of Sensors, 2017, 2017.
[54] ZOU, Kelly H.; TUNCALI, Kemal; SILVERMAN, Stuart G. Correlation and simple linear regression. Radiology, 2003, 227.3: 617-628.