簡易檢索 / 詳目顯示

研究生: 康子俞
Kang, Tzu-Yu
論文名稱: PA-PEG-PA光交聯水膠作為人類臍靜脈內皮細胞體外生長支架之研究
The study of photo-crosslinkable PA-PEG-PA hydrogel as a scaffold for human umbilical vein endothelial cells (HUVECs)
指導教授: 朱一民
Chu, I-Ming
口試委員: 蔡德豪
Tsai, De-Hao
姚少凌
Yao, Shao-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 57
中文關鍵詞: 聚乙二醇丙胺酸光交聯水膠人類臍靜脈內皮細胞
外文關鍵詞: Poly(ethylene glycol), Alanine, Photocrosslinked hydrogel, Human umbilical vein endothelial cells
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將聚乙二醇(poly(ethylene glycol), PEG)兩端共聚合上丙胺酸(ʟ-alanine),形成一三嵌段共聚物PA-PEG-PA(PEA),希望藉由改變材料親疏水性質,來促進細胞與材料之間的貼附,再經由末端烯基化改質,將其末端接上丙烯醯基(acryloyl group),使其成為具有光交聯性質之兩性高分子PEA-DA,經過末端烯基化改質後,即可利用紫外光(UV light)對此材料進行照射,藉此引發光聚合反應,形成光交聯水膠,進一步增強其機械性質。
    將不同濃度之水膠進行膠含率、含水率、結構型態與機械性質之量測,實驗結果發現濃度10 wt%之水膠具有較佳的成膠性質及機械強度。由水膠毒性測試之結果,可以發現將水膠先浸泡於培養基的方式能有效的溶出殘留在膠體中的光起始劑,降低對細胞的毒性,其細胞存活率皆維持在90%以上。隨後進行細胞與水膠共培養之測試,觀察細胞存活率及在膠體中之生長情形,由MTT assay結果可看出第七天之細胞存活率皆高於第四天,證明細胞可在此膠體環境下作生長,而由Live/Dead assay結果發現細胞會鑽進PEA-DA水膠內作生長,而非貼附於水膠之表面。接著以定量逆轉錄聚合酶鏈式反應及免疫螢光染色進行人類臍靜脈內皮細胞(HUVECs)之功能性測試,其結果發現,在共培養七天後,PEA-DA水膠組別之特定基因表現量皆高於PEG-DA水膠組別,證明共聚合上Alanine之PEA-DA水膠,雖然在細胞存活率的改善方面幫助不大,但在長期的培養下,相較於PEG-DA水膠,可以讓人類臍靜脈內皮細胞有更高的表現量。


    In this study, ʟ-alanine were copolymerized at both ends of poly(ethylene glycol) forming a triblock copolymer PA-PEG-PA(PEA) to promote cell adhesion. Then the terminal group of PEA were modified by acryloyl group to make it an amphiphilic block copolymer with photo-crosslinking property. After modification of terminal group, the material can be exposed to ultraviolet light (UV light) to induce photo-polymerization, and obtain photocrosslinked hydrogels which have greater mechanical strength.
    We observe and measure the gel fraction, water content, structure and mechanical property of hydrogels in different concentration. The results showed that hydrogels with concentration of 10 wt% had better gelation property and mechanical strength. According to the results of hydrogel toxicity test, soaking the hydrogel in the medium can effectively remove the unreacted polymer and the remained photoinitiator to reduce the toxicity of hydrogel. The cell viability all maintained at more than 90%. Subsequently, cells and hydrogels were co-cultured to observe cell viability and the growth in the hydrogel. According to the results of MTT assay, the cell survival rate of the seventh day was higher than the fourth day, demonstrating that the cells can grow in this environment very well. However, Live/Dead assay results showed that cells migrated into PEA-DA hydrogel instead of attaching to the surface of the hydrogel. Functional characterization of human umbilical vein endothelial cells (HUVECs) was performed by quantitative reverse transcriptase polymerase chain reaction and immunofluorescence staining afterwards. As a result, it was found that the specific gene expression of the PEA-DA hydrogel group was higher than the PEG-DA hydrogel group after seven days of co-culture, demonstrating that the PEA-DA hydrogel which copolymerized with Alanine does not help much in improving the cell survival rate, but the human umbilical vein endothelial cells express higher specific gene expression compared with PEG-DA hydrogel in the long-term cultivation.

    摘要--------------------------------------------------------i Abstract----------------------------------------------------ii 目錄--------------------------------------------------------iv 圖目錄------------------------------------------------------viii 表目錄------------------------------------------------------xi 第一章 文獻回顧---------------------------------------------1 1-1 高分子水膠(Hydrogel)---------------------------------1 1-2 環境應答型水膠(Environment-sensitive hydrogel)-------3 1-2-1 溫度敏感型(Temperature-sensitive)--------------------3 1-2-2 酸鹼敏感型(pH-sensitive)-----------------------------4 1-2-3 葡萄糖敏感型(Glucose-sensitive)----------------------5 1-2-4 電敏感型(Electro-sensitive)--------------------------5 1-2-5 其他環境刺激-----------------------------------------5 1-3 光交聯水膠(Photocrosslinked hydrogel)----------------6 1-3-1 簡介-------------------------------------------------6 1-3-2 成膠機制---------------------------------------------6 1-3-3 常見材料---------------------------------------------9 1-3-4 PEG水膠之相關研究------------------------------------10 第二章 研究動機與目的---------------------------------------18 第三章 實驗材料與方法---------------------------------------19 3-1 實驗藥品---------------------------------------------19 3-2 實驗儀器---------------------------------------------20 3-3 PA-PEG-PA三嵌段共聚物合成-----------------------------21 3-3-1 PEG末端改質 (-OH基→-NH2基)----------------------------21 3-3-2 N-carboxyl anhydride of ʟ-Alanine(NCA`s Ala)環化反應--21 3-3-3 PA-PEG-PA合成製備------------------------------------22 3-4 PA-PEG-PA末端烯基化修飾-------------------------------22 3-5 高分子鑑定--------------------------------------------23 3-5-1 核磁共振光譜(1H-NMR)----------------------------------23 3-5-2 凝膠滲透層析儀(Gel permeation chromatography, GPC)----23 3-5-3 全反射傅立葉轉換紅外光光譜儀(Attenuated total reflection-Fourier transform infrared spectrometer, ATR-FTIR)-----------24 3-6 光交聯水膠製備----------------------------------------24 3-7 水膠性質觀察與測量------------------------------------24 3-7-1 膠含率(Gel fraction)---------------------------------24 3-7-2 含水率(Water content)--------------------------------25 3-7-3 水膠結構型態------------------------------------------25 3-7-4 抗壓測試(Compression test)----------------------------25 3-8 水膠之生物相容性(Biocompatibility)---------------------25 3-8-1 細胞培養(Cell culture)--------------------------------25 3-8-2 細胞繼代(Cell subculture)-----------------------------26 3-8-3 水膠毒性測試-------------------------------------------27 3-8-4 水膠與細胞之共培養-------------------------------------28 3-9 細胞之功能性測試---------------------------------------29 3-9-1 免疫螢光染色(Immunofluorescence staining)--------------29 3-9-2 定量逆轉錄聚合酶鏈式反應(Quantitative reverse transcriptase polymerase chain reaction, qRT-PCR)---------------------------30 第四章 實驗結果與討論-----------------------------------------32 4-1 高分子結構與性質鑑定------------------------------------32 4-1-1 1H-NMR結構鑑定-----------------------------------------32 4-1-2 ATR-FTIR結構鑑定---------------------------------------35 4-2 水膠之性質與結構----------------------------------------36 4-2-1 高分子溶液製備情形--------------------------------------36 4-2-2 膠含率(Gel fraction)-----------------------------------37 4-2-3 含水率(Water content)----------------------------------38 4-2-4 掃描式電子顯微鏡(SEM)-----------------------------------39 4-2-5 抗壓測試(Compression test)-----------------------------40 4-3 水膠之生物相容性----------------------------------------41 4-3-1 HUVECs細胞之水膠毒性測試--------------------------------41 4-3-2 293T細胞與水膠共培養分析--------------------------------43 4-3-3 HUVECs細胞與水膠共培養分析------------------------------44 4-4 細胞之功能性測試----------------------------------------46 4-4-1 免疫螢光染色(Immunofluorescence staining)---------------46 4-4-2 定量逆轉錄聚合酶鏈式反應(Quantitative reverse transcriptase polymerase chain reaction, qRT-PCR)----------------------------47 第五章 結論---------------------------------------------------51 第六章 參考文獻-----------------------------------------------54

    1. Kopecek, J.: Swell gels. Nature, 417, 388-391 (2002).
    2. Wichterle, O., Lim, D.: Hydrophilic gels for biological use. Nature, 185, 117-118 (1960).
    3. Fedorovich, N., Swennen, I., Girones, J., Moroni, L., Blitterswijk, C., Schacht, E., Alblas, J., Dhert, W.: Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules, 10 (7), 1689-1696 (2009).
    4. Yang, J., Han, C.-R., Duan, J.-F., Xu, F., Sun, R.-C.: Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl. Mater. Interfaces, 5 (8), 3199-3207 (2013).
    5. Wang, W., Zhang, Y.-Y., Liu, W.-G.: Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Progress in polymer science, 71, 1-25 (2017).
    6. Fujikawa, S., Yokota, T., Koga, K.: Immobilization of β-glucosidase in calcium alginate gel using genipin as a new type of cross-linking reagent of natural origin. Applied microbiology and biotechnology, 28 (4-5), 440-441 (1988).
    7. Gibbs, D., Black, C., Dawson, J., Oreffo, R.: A review of hydrogel use in fracture healingand bone regeneration. Journal of tissue engineering and regenerative medicine, 10 (3), 187-198 (2014).
    8. Lee, K.-Y., Mooney, D.: Hydrogels for tissue engineering. Chem. Rev., 101 (7), 1869-1880 (2001).
    9. Bos, G., Verrijk, R., Franssen, O., Bezemer, J., Hennink, W., Crommelin, D.: Hydrogels for the controlled release of pharmaceutical proteins. Pharmaceutical technology, 25, 110-120 (‎2001).
    10. Hoffman, A.: Hydrogels for biomedical applications. Advanced drug delivery reviews, 64, 18-23 (2001).
    11. Mano, J.: Stimuli-responsive polymeric systems for biomedical applications. Advanced engineering materials, 10 (6), 515-527 (2008).
    12. Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 53 (3), 321-339 (2001).
    13. Ding, F.-Y., Tang, Z., Ding, B.-B., Xiong, Y., Cai, J., Deng, H.-B., Du, Y.-M., Shi, X.-W.: Tunable thermosensitive behavior of multiple responsive chitin. Journal of materials chemistry B, 2 (20), 3050-3056 (2014).
    14. Vo, T., Ekenseair, A., Kasper, F., Mikos, A.: Synthesis, physicochemical characterization, and cytocompatibility of bioresorbable, dual-gelling injectable hydrogels. Biomacromolecules, 15 (1), 132-142 (2014).
    15. Kajiwara, K., Ross-Murphy, S.: Synthetic gels on the move. Nature, 355 (6357), 208 (1992).
    16. McGann, C., Dumm, R., Jurusik, A., Sidhu, I., Kiick, K.: Thiol-ene photocrosslinking of cytocompatible resilin-like polypeptide-PEG hydrogels. Macromolecular bioscience, 16 (1), 129-138 (2016).
    17. Nuttelman, C., Henry, S., Anseth, K.: Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds. Biomaterials, 23 (17), 3617-3626 (2002).
    18. Williams, C., Malik, A., Kim, T.-K., Manson, P., Elisseeff, J.: Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 26 (11), 1211-1218 (2005).
    19. Scranton, A., Bowman, C., Peiffer, R.: Photopolymerization: fundamentals and applications. ACS Publications (1997).
    20. Bryant, S., Nuttelma, C., Anseth, K.: Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. Journal of biomaterials science, 11 (5), 439-457 (2000).
    21. Ifkovits, J., Burdick, J.: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue engineering, 13 (10), 2369-2385 (2007).
    22. Vitale, A., Bongiovanni, R., Ameduri, B.: Fluorinated oligomers and polymers in photopolymerization. Chemical reviews, 115 (16), 8835-8866 (2015).
    23. Cruise, G., Scharp, D., Hubbell, J.: Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials, 19 (14), 1287-1294 (1998).
    24. Yoshii, E.: Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity. Journal of biomedical materials research, 37 (4), 517-524 (1997).
    25. Ingavle, G., Gehrk, S., Detamore, M.: The bioactivity of agarose–PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials, 35 (11), 3558-3570 (2014).
    26. Mellott, M., Searcy, K., Pishko, M.: Release of protein from highly cross-linked hydrogels of poly (ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials, 22 (9), 929-941 (2001).
    27. Peppas, N., Hilt, J., Khademhosseini, A., Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced materials, 18 (11), 1345-1360 (2006).
    28. Shin, H.-S., Jo, S.-B., Mikos, A.: Biomimetic materials for tissue engineering. Biomaterials, 24 (24), 4353-4364 (2003).
    29. Kim, S.-J., Jun, I.-D., Kim, D.-W., Lee, Y.-B, Lee, Y.-J., Lee, J.-H., Park, K.-D., Park, H.-S., Shin, H.-S.: Rapid transfer of endothelial cell sheet using a thermosensitive hydrogel and its effect on therapeutic angiogenesis. Biomacromolecules, 14 (12), 4309-4319 (2013).
    30. Moon, J., Saik, J., Poché, R., Leslie-Barbick, J., Lee, S.-H., Smith, A., Dickinson, M., West, J.: Biomimetic hydrogels with pro-angiogenic properties. Biomaterials, 31 (14), 3840-3847 (2010).
    31. Hersel, U., Dahmen, C., Kessler, H.: RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 24 (24), 4385-4415 (2003).
    32. Burdick, J., Anseth, K.: Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 23 (22), 4315-4323 (2002).
    33. Song, A., Rane, A., Christman, K.: Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing. Acta Biomater., 8 (1), 41-50 (2012).
    34. Kung, P.-T.: Synthesis, characterization, and application of photo-crosslinkable PA-PEG-PA hydrogel. Master thesis of National Tsing Hua University (2016).

    QR CODE