簡易檢索 / 詳目顯示

研究生: 何政穎
Ho, Cheng-Ying
論文名稱: 應用於無鉛銲點之低電阻薄鎳鈀金表面處理技術:界面相變化、接合強度及最佳鎳(磷)層厚度設計
Ultrathin-ENEPIG Surface Finish in Low Impedance Soldering: Metallurgical Reactions, Bonding Strength, and Optimal Ni(P) Thickness Evaluation
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員: 杜正恭
Jenq-Gong Duh
劉國全
Kuo-Chuan Liu
石東益
Toung-Yi Shih
吳子嘉
Albert T. Wu
李建勳
Jian-Xun Li
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 194
中文關鍵詞: 電子封裝無鉛銲料薄鎳鈀金介金屬化合物可靠度測試電子微探儀背向電子繞射儀三維立體封裝奈米壓痕
外文關鍵詞: Electronic packaging, Pb-free solder, Ultrathin-ENEPIG, Intermetallic compound, Reliability test, EPMA, EBSD, 3D packaging, Nano-indenter
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在覆晶封裝技術(flip chip technology)中,銲點的可靠度扮演著舉足輕重的角色。成功的銲點除了擔負晶片與印刷電路板間的接合外,也需要確保晶片與電路板間的高品質電訊號傳輸。近年來,無電鍍鎳鈀浸金(ENEPIG)被廣泛的應用於電子封裝中的金屬銲墊之表面處理,其製程的穩定性乃至於機械性質上的表現將相當優異。然而,ENEPIG中的非晶態鎳磷層電阻率極高,容易造成接點整體的電阻升高而造成電訊號的延遲和過多的功率耗損,因此,尋找低電阻的表面處理技術變成了相當重要的課題。
      本研究嘗試將ENEPIG中的無電鍍鎳磷層減薄至次微米尺度(薄鎳鈀金,Ultrathin-ENEPIG)來改善其電阻過高的問題,無電鍍鎳磷層的厚度為0.05至0.31微米。實驗結果顯示薄鎳鈀金之無電鍍鎳磷層經過第一次回銲後便被消耗完畢,計算結果也證實薄鎳鈀金的電阻值較傳統ENEPIG低了約一個數量級。於是接下來的問題便是,在考量低電阻和機械性質可靠度的情況下,0.05至0.31微米的無電鍍鎳磷層厚度間其最佳的厚度為何。
      根據高速剪力撞球測試的結果,薄鎳鈀金在無電鍍鎳磷層厚度為0.18和0.31微米時其機械強度的表現相當優異,然而在經過1000小時的時效熱處理後,0.31微米的薄鎳鈀金由於錫和銅原子對於Ni3P層擴散速率的差異而使的界面產生大量的奈米空孔,進而使的銲點強度快速劣化。反之,0.18微米的薄鎳鈀金由於有較多的Ni3P相與錫反應生成Ni2Sn1+xP1-x相而抑制了奈米空孔的生成,也使的經過長時間的時效反應後期機械強度並沒有太明顯的下降。此外,透過低速剪力疲勞測試顯示,薄鎳鈀金中針狀的介金屬化合物可提供對裂紋額外的幾何強化,也能提高和點抵抗外應利變形的能力。
      總結來說,儘管薄鎳鈀金確實保證了銲點的低電阻特性,然而在長時間的使用下其機械強度下降的程度比起傳統ENEPIG要來的明顯。儘管如此,當我們在薄鎳鈀金中選擇0.18微米的無電鍍鎳磷層厚度時,不僅是其電阻值低,在長時間使用後的機械強度穩定性也相當良好。


    The continuing thrust toward high-density and high-performance electronic devices has spurred development of more reliable solder joints in flip-chip technology. Successful solder joints not only give rise to metallurgically stable and mechanically robust but also ensure the electrical and signal delivery with excellent quality. Recently, Electroless Ni(P)/Electroless Pd(P)/Immersion Au (ENEPIG) has been widely used as surface finish for metal bond pad because of its many superior comprehensive performances. However, the amorphous electroless Ni(P) layer in ENEPIG dramatically increase the electrical resistance of solder joints and lead to pronounced signal degradation and conductor loss. Thus, it is urgently needed to search for another alternative surface finish which is suitable for low impedance soldering.
    ENEPIG with ultrathin electroless Ni(P) deposit (ultrathin-ENEPIG) was used to decrease the electrical impedance. The Ni(P) layer in ultrathin-ENEPIG was designed in submicron meter scale (0.05-0.31 µm) and expected to be completely exhausted after the first reflow process. The electrical impedance in ultrathin-ENEPIG was about an order magnitude lower than that in conventional ENEPIG. The next question is that what the optimal Ni(P) thickness is in ultrathin-ENEPIG regarding both the stability of mechanical bonding strength and superior electrical conductivity.
    In this study, the results of high speed impact test vehicle depicted that ultrathin-ENEPIG with 0.18 and 0.31µm electroless Ni(P) layer performed well owing to their limited growth of interfacial IMC. However, after 1000 hr thermal aging, the bonding strength of ultrathin-ENEPIG with 0.31 µm Ni(P) layer degraded abruptly because of the Kirkendall voids formation resulted from the huge difference in the diffusivity between Cu and Sn. On the other hand, the phase transformation from Ni3P to Ni2Sn1+xP1-x in ultrathin-ENEPIG with 0.18 µm Ni(P) layer eliminated the Kirkendall voids and further avoided the bonding strength degradation after thermal aging. Moreover, the needle-like interfacial IMC was proved to provide interlocking mechanics from fast crack propagation and improved the mechanical performance in the final part of the study.
    In summary, although ultrathin-ENEPIG indeed provided ultra-low electrical impedance, the mechanical bonding strength may decay faster than conventional ENEPIG. Notwithstanding, it is suggested that 0.18 µm would be the optimal Ni(P) thickness due to its limited growth of interfacial IMC, better bonding strength maintenance after prolonged thermal aging, and interlocking mechanics caused by the needle-like (Cu,Ni)6Sn5 IMC morphology.

    Contents Lists of Table Figures Caption Abstract Chapter 1 Background Chapter 2 Literature Review 2.1 Solder Joint and Flip Chip Technology 2.2 Metallurgical Reactions in Pb-free Solder Joint 2.2.1 Typical Cu-Sn metallurgical reactions 2.2.2 Metallurgical reactions in electroless Ni(P)-based Pb-free solder joint 2.2.3 Metallurgical reactions in ENEPIG Pb-free solder joint 2.2.4 Microstructure evolution in ENEPIG Pb-free solder joint with increasing reaction time 2.3 Solder Joint Mechanical Reliability Evaluation 2.3.1 Board level drop test 2.3.2 High speed impact test 2.3.3 Low speed cyclic shear test 2.3.4 Relations between strain rate and bonding strength 2.4 Grain Orientation in Solder Joint 2.4.1 Grain orientation of β-Sn in solder alloy 2.4.2 Grain orientation of interfacial IMC 2.5 Motivation and Objectives 2.5.1 Drawbacks of ENEPIG surface finish 2.5.2 A new surface finish design: ultrathin-ENEPIG 2.5.3 Niches of ultrathin-ENEPIG 2.7 Thesis Overview Chapter 3 Experimental Procedure 3.1 Solder Joint Fabrication 3.2 Sample Preparation for Characterization 3.3 Characterization and Analysis 3.3.1 Microstructure evaluation 3.3.2 Composition analysis 3.3.3 High speed impact test 3.3.4 Low speed cyclic shear test 3.3.5 Grain orientation evaluation 3.3.6 Hardness and Elastic Modulus Measurement Chapter 4 Results and Discussion 4.1 Electrical Impedance, Interfacial Reaction, and Mechanical Bonding Strength of As-reflowed SAC305/Ultrathin-ENEPIG Solder Joints with Various Ni(P) Thickness 4.1.1 Electrical impedance estimation 4.1.2 Microstructure in solder matrix 4.1.3 Interfacial microstructure features 4.1.4 Formation of secondary-(Cu,Ni)6Sn5 4.1.5 Summary for the Ni(P) thickness selection in as-reflowed ultrathin-ENEPIG solder joint on interfacial morphology and IMC formation 4.1.6 Results of high speed impact test 4.2 Quantifying the Dependence of Ni(P) Thickness and P-rich Layer Formation on the Growth of Cu-Sn IMC and the Thermal Stability of Ultrathin-ENEPIG Surface Finish 4.2.1 Electrical impedance evolution after thermal aging 4.2.2 Growth kinetics of interfacial IMC after thermal aging 4.2.3 Influence of Ni(P) thickness and P-rich layer formation on the Cu diffusion flux 4.2.4 growth kinetics of interfacial IMC in liquid-state reaction 4.2.5 Mechanical stabilization of SAC305/ultrathin-ENEPIG solder joint under thermal aging reaction 4.2.6 Failure mechanism of aged SAC305/ultrathin-ENEPIG solder joint 4.3 Correlation between Grain Orientation, Morphology, and Crack Resistance of η-(Cu,Ni)6Sn5 IMC in SAC305/Ultrathin-ENEPIG Solder Joints under Low-speed Fatigue Shear Stress 4.3.1 Crack initiation and propagation in SAC305/ENEPIG solder joint and grain orientation of needle-like (Cu,Ni)6Sn5 4.3.2 Crack initiation and propagation in SAC305/OSP Cu solder joint and grain orientation of scallop type (Cu,Ni)6Sn5 4.3.3 Optimal Ni(P) thickness selection in ultrathin-ENEPIG surface finish Chapter 5 Conclusions Apendix Influence of Bump Height Confinement on the Interfacial IMC Formation and Solder Alloy Hardening in Cu/SnAg/Ni and Cu/SnAgCu/Ni Assemblies A.1 Background A.1.1 Miniaturization trend of electronic packaging and solder joints A.1.2 Solder alloy selection: Sn-Ag and Sn-Ag-Cu solders A.1.3 Motivations and experimental design A.2 Results and Discussion A.2.1 Interfacial IMC formation in various solder bump height A.2.2 Eutectic microstructure evolution with respect to various solder joint dimension A.2.3 Mechanical responses of solders by nanoindentation A.3 Conclusions References 個人簡歷 自傳 Publication Lists Awards and honors International Conference

    1. G. R. Blackwell, “The Electronic Handbook”, Boca Raton, (2000) Florida: CRC Press.
    2. J. H. Lau, “Ball Grid Array Technology”, McGraw-Hill, (1995) New York.
    3. K. N. Tu, “Solder Joint Technology”, Springer, (2007) Los Angeles.
    4. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-free solder alloy with superior mechanical-properties” Appl. Phys. Lett. 63 (1993) 15.
    5. C. S. Chang, A. Oscilowski, and R. C. Bracken, “Future challenges in electronics packaging” IEEE Circuits Devices Mag. 14 (1998) 45.
    6. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics” Mater. Sci. Eng. R 27 (2000) 95.
    7. K. Zeng and K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology” Mater. Sci. Eng. R 38 (2002) 55.
    8. L. F. Miller, “Controlled collapse reflow chip jointing” IBM J. Res. Develop. 13 (1969) 239.
    9. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys” Mater. Sci. Eng. A 333 (2002) 106.
    10. I. E. Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications” J. Mater. Sci: Mater. Electron. 18 (2007) 55.
    11. J. H. Lau, “Flip Chip Technologies” McGraw-Hill, (1996) New York.
    12. L. M. Yang, Q. K. Zhang, and Z. F. Zhang, “Effects of solder dimension on the interfacial shear strength and fracture behaviors of Cu/Sn-3Cu/Cu joints” Scripta Mater. 67 (2012) 637.
    13. L.M. Yin, X.P. Zhang, and C. Lu, “Size and volume effects on the strength of microscale lead-free solder joints” J. Electron. Mater. 38 (2009) 2179.
    14. H.Y. Chuang, T.L. Yang, M.S. Kuo, Y.J. Chen, J.J. Yu, C.C. Li, and C. Robert Kao, “Critical Concerns in Soldering Reactions Arising from Space Confinement in 3-D IC Packages” IEEE Trans. Device Mater. Reliab. 12 (2012) 233.
    15. R.W. Yang, Y.W. Chang, W.C. Sung, and C. Chen, “Precipitation of large Ag3Sn intermetallic compounds in SnAg2.5 microbumps after multiple reflows in 3D-IC packaging” Mater. Chem. Phys. 134 (2012) 340.
    16. Y.C. Huang, S.W. Chen, and K.S. Wu, “Size and substrate effects upon undercooling of Pb-free solders” J. Electron. Mater. 39 (2010) 109.
    17. M.B. Zhou, X. Ma, and X.P. Zhang, “Undercooling behavior and intermetallic compound coalescence in microscale Sn-3.0Ag-0.5Cu solder balls and Sn-3.0Ag-0.5Cu/Cu joints” J. Electron. Mater. 41 (2012) 3169.
    18. F.Y. Ouyang and W.C. Jhu, “Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits” J. Alloys Compd. 580 (2013) 114.
    19. L. Ma, Y. Zuo, S. Liu, F. Guo, and X. Wang, “The failure models of Sn-based solder joints under coupling effects of electromigration and thermal cycling” J. Appl. Phys. 113 (2013) 044904.
    20. P. Snugovsky, P. Arrowsmith, and M. Romansky, “Electroless Ni/immersion Au interconnects: investigation of black pad in wire bonds and solder joints” J. Electron. Mater. 30 (2001) 1262.
    21. X. Wu, D. Cullen, G. Brist, and O. Ramahi, “Surface finish effects on high-speed signal degradation” IEEE Trans Adv. Packag. 31 (2008) 182.
    22. P. A. Totta and R. P. Sopher, “Controlled collapse reflow chip jointing” IBM J. Res. Develop. 13 (1969) 226.
    23. P. A. Totta and R. P. Sopher, “SLT device metallurgy and its monolithic extension” IBM J. Res. Develop. 13 (1969) 226.
    24. J. H. Lau and S. W. R. Lee, “Chip scale package, CSP: Design, Materials, Process and Applications” McGraw-Hill (1999) New York.
    25. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, “Binary Alloy Phase Diagrams” ASM Int., Materials Park, (1990) Ohio.
    26. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-free solder alloy with superior mechanical-properties” Appl. Phys. Lett. 63 (1993) 15.
    27. K. Suganuma, “Advances in lead-free electronics soldering” Current Opinion Solid State Mater. Sci. 5 (2001) 55.
    28. C. S. Chang, A. Oscilowski, and R. C. Bracken, “Future challenges in electronic packaging” IEEE Circuits Devices Mag. 14 (1998) 45.
    29. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics” Mater. Sci. Eng. R 27 (2000) 95.
    30. K. N. Tu, A. M. Gusak, and M. Li, “Physics and materials challenges for lead-free solders” J. Appl. Phys. 93 (2003) 1335.
    31. H. Ma and J. C. Suhling, “A review of mechanical properties of lead-free solders for electronic packaging” J. Mater. Sci. 44 (2009) 1141.
    32. D. R. Frear, J. W. Jang, J. K. Lin, and C. Zang, “Pb-free solders for flip-chip interconnects” JOM 53 (2001) 28.
    33. I. E. Anderson, B. A. Cook, J. L. Harringa, and R. L. Terpstra, “Sn-Ag-Cu solders and solder joints: alloy development, microstructure, and properties” JOM 54 (2002) 26.
    34. W. R. Osório, D. R. Leiva, L. C. Peixoto, L. R. Garcia, and A. Garcia, “Mechanical properties of Sn–Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology” J. Alloys Compd. 562 (2013) 194.
    35. W. Peng, E. Monlevade, and M. E. Marques, “Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu” Microelectron. Reliab. 47 (2007) 2161.
    36. M. Y. Li, Z. H. Zhang, J. M. Kim, “Polymorphic transformation mechanism of eta and eta ' in single crystalline Cu6Sn5” Appl. Phys. Lett. 98 (2011) 201901.
    37. K. Nogita, C. M. Gourlay, T. Nishimura, “Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates” JOM 61 (2009) 45.
    38. K. Nogita, “Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys” Intermetallics 18 (2010) 145.
    39. C. Y. Yu and J. G. Duh, “Stabilization of hexagonal Cu6(Sn,Zn)5 by minor Zn doping of Sn-based solder joints” Scripta Mater. 65 (2011) 783.
    40. D. Mu, H. Huang, S. D. McDonald, J. Read, and K. Nogita, “Investigating the mechanical properties, creep and crack pattern of Cu6Sn5 and (Cu,Ni)6Sn5 on diverse crystal planes” Mater. Sci. Eng. A 566 (2013) 126.
    41. D. Mu, H. Huang, S. D. McDonald, and K. Nogita, “Creep and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 at elevated temperatures” J. Electron. Mater. 42 (2013) 304.
    42. D. Mu, H. Huang, and K. Nogita, “Anisotropic mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5” Mater. Lett. 86 (2012) 46.
    43. D. Mu, H. Yasuda, H. Huang, and K. Nogita, “Growth orientations and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 on poly-crystalline Cu” J. Alloys. Compd. 536 (2012) 38.
    44. Y. Q. Wu, J. C. Barry, T. Yamamoto, Q. F. Gu, S. D. McDonald, S. Matsumura, H. Huang, and K. Nogita, “A new phase in stoichiometric Cu6Sn5” Acta Mater. 60 (2012) 6581.
    45. Y. Q. Wu, S. D. McDonald, J. Read, H. Huangb, and K. Nogita, “Determination of the minimum Ni concentration to prevent the η to η4+1 polymorphic transformation of stoichiometric Cu6Sn5” Scripta Mater. 68 (2013) 595.
    46. G. Zenga, S. D. McDonald, J. J. Read, Q. Gu, and K. Nogita, “Kinetics of the polymorphic phase transformation of Cu6Sn5” Acta Mater. 69 (2014) 135.
    47. W. Gierlotka, S. W. Chen, S. K. Lin. “Thermodynamic description of the Cu-Sn system” J. Mater. Res. 22 (2007) 3158-3165.
    48. A. D. Smigelskas and E. O. Kirkendall, “Zinc diffusion in alpha-brass” Trans. AIME 171 (1947) 130.
    49. K. Zeng, R. Stierman, T. C. Chiu1, D. Edwards, K. Ano, and K. N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability” J. Appl. Phys. 97 (2005) 024508.
    50. K. N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology” Mater. Sci. Eng. R 34 (2001) 1.
    51. P. W. Dehaven, “The reaction kinetics of liquid 60/40 Sn/Pb solder with copper and nickel: a high temperature X-ray diffraction study” in Proc. Electronic Packaging Materials Science, Materials Research Society, USA, (1984) pp. 123-128.
    52. K. N. Tu and R. Rosenberg, “Room temperature interaction in bimetallic thin films” Jpn. J. Appl. Phys. 2 (1974) 633.
    53. P. Nash, “Phase Diagram of Binary Nickel Alloys” ASM Int. (1991) pp. 235.
    54. J. W. Jang, P. G. Kim, K. N. Tu, D. R. Frear, and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology” J. Appl. Phys. 85 (1999) 8456.
    55. B. L. Young and J. G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing” J. Electron. Mater. 30 (2001) 878.
    56. M. He, W. H. Lau, and G. Qi, “Solid state interfacial reaction of Sn-37Pb and Sn-3.5Ag solders with Ni-P under bump metallization” Acta Mater. 52 (2004) 2047.
    57. M. He, W. H. Lau, G. Qi, and Z. Chen, “Intermetallic compound formation between Sn-3.5Ag solder and Ni-based metallization during liquid state reaction” Thin Solid Film 462 (2004) 376.
    58. A. Kumar, Z. Chen, S. G. Mhaisalkar, C. C. Wong, P. S. Teo, and V. Kripesh, “Effect of Ni-P thickness on solid-state interfacial reactions between Sn-3.5Ag solder and electroless Ni-P metallization on Cu substrate” Thin Solid Films 504 (2006) 410.
    59. Y. C. Lin, T. Y. Shih, S. K. Tien, and J. G. Duh, “Morphological and microstructural evolution of phosphorous-rich layer in SnAgCu/Ni-P UBM solder joint” J. Electron. Mater. 36 (2007) 1469.
    60. Y. C. Lin and J. G. Duh, “Phase transformation of the phosphorous-rich layer in SnAgCu/Ni-P solder joint” Scripta Mater. 54 (2006) 1661.
    61. Y. C. Lin, T. Y. Shih, S. K. Tien, and J. G. Duh, “Suppressing Ni-Sn-P growth in SnAgCu/Ni-P solder joints” Scripta Mater. 56 (2007) 49.
    62. Y. C. Sohn, J. Yu, S. K. Kang, D. Y. Shih, and T. Y. Lee, “Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization” J. Mater. Res. 19 (2004) 2428.
    63. Y. C. Sohn and J. Yu, “Correlation between chemical reaction and brittle fracture found in electroless Ni(P)/immersion gold solder interconnection” J. Mater. Res. 50 (2005) 1931.
    64. J. W. Jang, D. R. Frear, T. Y. Lee, and K. N. Tu, “Morphology of interfacial reaction between lead-free solders and electroless Ni-P under bump metallization” J. Appl. Phys. 88 (2000) 6360.
    65. R. C. Agarwala and S. Ray, “Variation of structure in electroless Ni-P films with phosphorous content” Z. Metallkd. 79 (1988) 472.
    66. Chiu, Zeng, Stierman, Edwards, and Ano, (2004) Electronic Components and Technology Conference, 1256.
    67. S. V. S. Tyagi, V. K. Tondon, and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and X-ray diffraction” Z. Metallkd. 76 (1985) 492.
    68. M. Erming, L. Shoufu, and L. Pengxing, “A transmission electron microscopy study on the crystallization of amorphous Ni-P electroless deposited coatings” Thin Solid Films 166 (1988) 273.
    69. C. T. Lu, H. W. Tseng, C. H. Chang, T. S. Huang, and C. Y. Liu, “Retardation of electromigration-induced Ni(P) consumption by an electroless Pd insertion layer” Appl. Phys. Lett. 96 (2010) 232103.
    70. L. Nicholls, R. Darveaux, A. Syed, S. Loo, T. Y. Tee, T. A. Wassick, and B. Batchelor, “Comparative electromigration performance of Pb free flip chip joints with varying board surface condition” IEEE ECTC Proceeding (2009) 914.
    71. W. H. Wu, C. S. Lin, S. H. Huang, and C. E. Ho, “Influence of palladium thickness on the soldering reactions between Sn-3Ag-0.5Cu and Au/Pd(P)/Ni(P) surface finish” J. Electron. Mater. 39 (2010) 2387.
    72. B. M. Chung, Y. H. Baek, J. Choi, and J. Y. Huh, “Effects of Pd(P) thickness on the microstructural evolution between Sn-3Ag-0.5Cu and Ni(P)/Pd(P)/Au surface finish during the reflow process” J. Electron. Mater. 41 (2012) 3348.
    73. Y. M. Kim, J. Y. Park, and Y. H. Kim, “Effect of Pd thickness on the interfacial reaction and shear strength in solder joints between Sn-3.0Ag-0.5Cu solder and electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish” J. Electron. Mater. 41 (2012) 763.
    74. C. E. Ho, C. C. Wang, M. A. Rahman, and Y. C. Lin, “Field-emission transmission electron microscopy study of the reaction sequence between Sn-Ag-Cu alloy and an amorphous Pd(P) thin film in microelectronic packaging” Thin Solid Films 529 (2013) 369.
    75. J. Y. Kim, Y. C. Sohn, and J. Yu, “Effect of Cu content on the mechanical reliability of Ni/Sn-3.5Ag system” J. Mater. Res. 22 (2007) 770.
    76. K. Zeng, M. Pierce, H. Miyazaki, and B. Holdford, “Optimization of Pb-free solder joint reliability from a metallurgical perspective” J. Electron. Mater. 41 (2012) 253.
    77. A. Kumar and Z. Chen, “Interdependent intermetallic compound growth in an electroless Ni-P/Sn-3.5Ag reaction couple” J. Electron. Mater. 40 (2011) 213.
    78. H. Kim, M. Zhang, C. M. Kumar, D. Suh, P. Liu, D. Kim, M. Xie, and Z. Wang, “Improved drop reliability performance with lead free solders of low Ag content and their failure modes” 2007 Electronic Components and Technology Conference Proceedings pp 962.
    79. S. J. Wang and C. Y. Liu, “Retarding growth of Ni3P crystalline layer in Ni(P) substrate by reacting with Cu-bearing Sn(Cu) solders” Scripta Mater. 49 (2003) 813.
    80. A. Kumar, M. He, and Z. Chen, “Barrier properties of thin Au/Ni-P under bump metallization for Sn-3.5Ag solder” Surf. Coat. Technol. 198 (2005) 283.
    81. A. Kumar and Z. Chen, “Effect of Ni-P thickness on the tensile strength of Cu/electroless Ni-P/Sn-3.5Ag solder joint” IEEE Trans. Compon. Packag. Technol. 29 (2006) 886.
    82. K. J. Zeng, R. Stierman, D. Abbott and M. Murtuza, “The root cause of black pad failure of solder joints with electroless Ni/immersion gold plating” JOM. 58 (2006) 75.
    83. P. Snugovsky, P. Arrowsmith and M. Romansky, “Electroless Ni/immersion Au interconnects: investigation of black pad in wire bonds and solder joints”, J. Electron. Mater. 30 (2001) 1262.
    84. N. Shaigan, S.N. Ashrafizadeh, M.S.H. Bafghi and S. Rastegari, “Elimination of the corrosion of Ni-P substrates during electroless hold plating”, J. Electrochem. Soc. 152 (2005) C173.
    85. Y. D. Jeon, Y. B. Lee and Y. S. Choi, “Thin electroless Cu/OSP on electroless Ni as a novel surface finish for flip chip solder joints”, Electronic Components and Technology Conference (2006).
    86. T. T. Mattila and J. K. Kivilahti, “Failure mechanisms of lead-free chip scale package interconnections under fast mechanical loading”, J. Electron. Mater. 34 (2005) 969.
    87. J. W. Yoon, B. I. Noh, and S. B. Jung, “Comparative study of ENIG and ENEPIG as surface finishes for a Sn-Ag-Cu solder joint” J. Electron. Mater. 40 (2011) 1950.
    88. Y. Oda, M. Kiso, S. Kurosaka, A. Okada, K. Kitajima, S. Hashimoto, and D. Gudeczauskas, “Study of suitable palladium and gold thickness in ENEPIG deposits for lead free soldering and gold wire bonding” 41st International Symposium.
    89. Y. Oda, M. Kiso, and S. Hashimoto, “IMC growth study on Ni-P/Pd/Au film and Ni-P/Au film using Sn/Ag/Cu lead-free solder” Proceedings of IPC Printed Circuits Expo (2006).
    90. T. R. Bieler, et al., IEEE Transactions components & packaging technologies, 31 (2008) 370.
    91. C. F. Tseng, T. K. Lee, G. Ramakrishna, K. C. Liu, J. G. Duh, “Suppressing Ni3Sn4 formation in the Sn-Ag-Cu solder joints with Ni-P/Pd/Au surface finish” Mater. Lett. 65 (2011) 3216.
    92. I. T. Wang, J. G. Duh, C. Y. Cheng, and J. Wang, “Interfacial reaction and elemental redistribution in Sn3.0Ag0.5Cu–xPd /immersion Au/electroless Ni solder joints after aging” Materials Science and Engineering B 177 (2012) 278.
    93. C. Y. Ho and J. G. Duh, "Wetting kinetics and wettability enhancement of Pd added electrolytic Ni surface with molten Sn-3.0Ag-0.5Cu solder", Mater. Lett. 92 (2013) 278.
    94. C. F. Tseng and J. G. Duh, “The interface of Pd on growth behavior of a quaternary (Cu,Ni,Pd)6Sn5 compound in Sn-3.0Ag-0.5Cu /Au /Pd/Ni-P solder joint during a liquid state reaction” J. Mater. Sci. 48 (2013) 857.
    95. C. F. Tseng, C. J. Lee, and J. G. Duh, “Roles of Cu in Pb-free solders jointed with electroless Ni(P) plating” Mater. Sci. Eng. A 574 (2013) 60.
    96. C. F. Tseng and J. G. Duh, “Correlation between microstructure evolution and mechanical strength in the Sn-3.0Ag-0.5Cu/ENEPIG solder joint” Mater. Sci. Eng. A 580 (2013) 169.
    97. J. W. Yoon, B. I. Noh, J. H. Yoon, H. B. Kang, and S. B. Jung, “Sequential interfacial intermetallic compound formation of Cu6Sn5 and Ni3Sn4 between Sn-Ag-Cu solder and ENEPIG substrate during a reflow process” J. Alloys Compd. 509 (2011) L153.
    98. JEDEC, 2003, JEDEC Standard No. JESD22-B111.
    99. T. Morita, R. Kajiwara, I. Ueno, and S. Okabe, “New method for estimating impact strength of solder-ball-bonded interface in semiconductor packages” Jpn. J. Appl. Phys. 47 (2008) 6566.
    100. K. E. Yazzie, H. E. Fei, H. Jiang, and N. Chawla, “Rate-dependent behavior of Sn alloy-Cu couples: Effects of microstructure and composition on mechanical shock resistance” Acta Mater. 60 (2012) 4336.
    101. K. E. Yazzie, H. X. Xie, J. J. Williams, and N. Chawla, “On the relationship between solder-controlled and intermetallic compound (IMC)-controlled fracture in Sn-based solder joints” Scripta Mater. 66 (2012) 586.
    102. S. K. Seo, S. K. Kang, M. G. Cho, D. Y. Shih, and H. M. Lee, “The crystal orientation of β-Sn grains in Sn-Ag and Sn-Cu solders affected by their interfacial reactions with Cu and Ni(P) under bump metallurgy” J. Electron. Mater. 38 (2009) 2461.
    103. L. P. Lehman, Y. Xing, T. R. Bieler, and E. J. Cotts, “Cyclic twin nucleation in tin-based solder alloys” Acta Mater. 58 (2010) 3546.
    104. B. F. Dyson, T. R. Anthony, and D. Turnbull “Interstitial dissusion of copper in tin” J. Appl. Phys. 38 (1967) 3408.
    105. D. C. Yeh and H. B. Huntington, “Extreme fast-diffusion system-nickel in single-crystal tin” Phys. Rev. Lett. 53 (1984) 1469.
    106. B. F. Dyson, “Diffusion of gold and silver in tin single crystals” J. Appl. Phys. 37 (1966) 2375.
    107. E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, “Current-crowding-induced electromigration failure in flip chip solder joints” Appl. Phys. Lett. 80 (2002) 580.
    108. M. Lu, D. Y. Shih, P. Lauro, C. Goldsmith, and D. W. Henderson, “Effect of Sn grain orientation electromigration degradation mechanism in high Sn-based Pb-free solders” Appl. Phys. Lett. 92 (2008) 211909.
    109. D. A. A. Shnawah, M. F. B. M. Sabri, and I. A. Badruddin, “A review on effect of minor alloying elements on thermal cycling and drop impact reliability of low-Ag Sn-Ag-Cu solder joints” Microelectron. Int. 29 (2012) 47.
    110. J. Hokka, T. T. Mattila, H. Xu, and M. P. Krockel “Thermal Cycling Reliability of Sn-Ag-Cu Solder Interconnections-Part 2: Failure Mechanisms” J. Electron. Mater. 42 (2013) 963.
    111. H. Chen, J. Li, and M. Li, “Dependence of recrystallization on grain morphology of Sn-based solder interconnects under thermo-mechanical stress” J. Alloys Compd. 540 (2012) 32.
    112. T. K. Lee, H. Ma, K. C. Liu, and J. Xue, “Impact of isothermal aging on long-term reliability of fine-pitch ball grid array packages with Sn-Ag-Cu solder interconnects: surface finish effects” J. Electron. Mater. 39 (2010) 2564.
    113. Y. M. Lin, C. J. Zhan, J. Y. Juang, J. H. Lau, T. H. Chen, R. Lo, M. Kao, T. Tian, and K. N. Tu, “Electromigration in Ni-Sn intermetallic micro bump joint for 3D IC chip stacking” Electronic Components and Technology Conference 2011 Proceedings pp.351.
    114. C. J. Zhan, J. Y. Juang, Y. M. Lin, Y. W. Huang, K. S. Kao, T. F. Yang, S. T. Lu, J. H. Lau, T. H. Chen, R. Lo, and M. J. Kao, “Development of fluxless chip-on-wafer bonding process for 3D IC chip stacking with 30 μm pitch lead-free solder micro bumps and reliability characterization” Electronic Components and Technology Conference 2011 Proceedings pp.14.
    115. H. Y. Hsiao, C. M. Liu, H. W. Lin, T. C. Liu, C. L. Lu, Y. S. Huang, C. Chen, and K. N. Tu, “Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper” Science 336 (2012) 1007.
    116. J. Gong, C. Liu, P. P. Conway, and V. V. Silberschmidt “Evolution of CUSN intermetallics between molten SnAgCu solder and Cu substrate” Acta Mater. 56 (2008) 4291.
    117. M. Yang, M. Li, L. Wang, Y. Fu, J. Kim, and L. Weng, “Growth behavior of Cu6Sn5 grains formed at an Sn3.5Ag/Cu interface” Matt. Lett. 65 (2011) 1506.
    118. W. Liu, Y. Tian, C. Wang, X. Wang, and R. Liu, “Morphologies and grain orientations of Cu-Sn intermetallic compounds in Sn3.0Ag0.5Cu/Cu solder joints” Matt. Lett. 86 (2012) 157.
    119. M. Yang, M. Li, and J. Kim, “Texture evolution and its effects on growth of interetallic compounds formed at eutectic Sn37Pb/Cu interface during solid-state aging” Intermetallics 31 (2012) 177.
    120. L. Ladani and O. Abdelhadi, “Structural Size Effect on Mechanical Behavior of Intermetallic Material in Solder Joints: Experimental Investigation” J. Electronic Packaging 137 (2014) 014501.
    121. S. F. Choudhury, and L. Ladani, “Grain growth orientation and anisotropy in Cu6Sn5 intermetallic: nanoindentation and electron backscatter diffraction analysis” J. Electron. Mater. 43 (2014) 996.
    122. W. Y. Chen, T. C. Chiu, K. L. Lin, A. T. Wu, W. L. Jang, C. L. Dong, and H. Y. Lee, “Anisotropic dissolution behavior of the second phase in SnCu solder alloys under current stress” Scripta Mater. 68 (2013) 317.
    123. J. Chen, Y. S. Li, P. F. Yang, C. Y. Ren, and D. J. Huang, “Structural and elastic properties of Cu6Sn5 and Cu3Sn from first-principles calculations” J. Mater. Sci. 24 (2009) 2361.
    124. M. B. Steer and T. Edwards, “Fundamental of Interconnect and Microstrip Design” New York, Wiley, 2000.
    125. H. Y. Chen, M. F. Ku, and C. Chen, “Effect of under-bump-metallization structure on electromigration of Sn-Ag solder joints” Adv. Mater. Res. 1 (2012) 83.
    126. R. Rao, “Fundamentals of Microsystems Packaging”, Tummala, (2001) McGraw-Hill.
    127. X. Chen, “EM modeling of microstrip conductor losses including surface roughness effect” IEEE Microw. Wirel. Compon. 17 (2007) 94.
    128. X. Wu, D. Cullen, G. Brist, and O. Ramahi, “Surface finish effects on high-speed signal degradation” IEEE Trans. Adv. Packag. 31 (2008) 182.
    129. H. W. Deng, Y. J. Zhao, C. J. Liang, and Y. M. Ning, “Effective skin depth for multilayer coated conductor” Prog. Electromagn. Res. M 9 (2009) 1.
    130. G. Y. Jang, C. S. Huang, L. Y. Hsiao, J. G. Duh, and H. Takahashi, “Mechanism of interfacial reaction for the Sn-Pb solder bump with Ni/Cu under-bump metallization in flip-chip technology” J. Electron. Mater. 33 (2004) 1118.
    131. C. Y. Ho, J. G. Duh, C. W. Lin, C. J. Lin, Y. H. Wu, H. C. Hong, and T. H. Wang, “Microstructural variation and high-speed impact responses of Sn-3.0Ag-0.5Cu/ENEPIG solder joints with ultra-thin Ni-P deposit”, J. Mater. Sci. 48, (2013) 2724.
    132. C. E. Ho, Y. C. Lin, and S. J. Wang, “Sn-Ag-Cu solder reaction with Au/Pd/Ni(P) and Au/Pd(P)/Ni(P) platings” Thin Solid Films 544 (2013) 551.
    133. C. E. Ho, C. C. Wang, M. A. Rahman, and Y. C. Lin, “Field-emission transmission electron microscopy study of the reaction sequence between Sn-Ag-Cu alloy and an amorphous Pd(P) thin film in microelectronic packaging” Thin Solid Films 529 (2013) 369.
    134. C. Y. Ho and J. G. Duh, “Quantifying the dependence of Ni(P) thickness in ultrathin-ENEPIG metallization on the growth of Cu-Sn intermetallic compounds in soldering reaction”, Mater. Chem. Phys. 148 (2014) 21.
    135. C. Y. Ho and J. G. Duh, “Optimal Ni(P) Thickness Design in Ultrathin-ENEPIG Metallization for Soldering: Concerning Electrical Impedance and Mechanical Bonding Strength”, Mater. Sci. and Eng. A, 611 (2014) 162.
    136. C. E. Ho, C. W. Fan, and W. Z. Hsieh, “Pronounced effects of Ni(P) thickness on the interfacial reaction and high impact resistance of the solder/Au/Pd(P)/Ni(P)/Cu reactive system” Surf. Coat. Technol. (2014) doi: 10.1016/j.surfcoat.2014.04.027.
    137. K. J. Wang, J. G. Duh, B. Sykes, “Impact testing of Sn-3.0Ag-0.5Cu solder with Ti/Ni(V)/Cu under bump metallization after aging at 150°C” J. Electron. Mater. 39 (2010) 2558.
    138. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments” J. Matter. Res. 7 (1992) 1564.
    139. C. M. Cheng, Y. T. Cheng, “On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile”, Appl. Phys. Lett. 71 (1997) 2623.
    140. W. C. Oliver, “Alternative technique for analyzing instrumented indentation data”, J. Mater. Res. 16 (2001) 3202.
    141. J. W. Jang, P. G. Kim, K. N. Tu, D. R. Frear, and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology” J. Appl. Phys. 85 (1999) 8456.
    142. A. Kumar, Z. Chen, S. G. Mhaisalkar, C. C. Wong, P. S. Teo, V. Kripesh, “Effect of Ni-P thickness on solid-state interfacial reactions between Sn-3.5Ag solder and electroless Ni-P metallization on Cu substrate” Thin Solid Films 504 (2006) 410.
    143. I. M. Lifshiz and V. V. Slezov, “The kinetics of precipitation from supersaturated solid solutions” J. Phys. Chem. Solids 19 (1961) 35.
    144. C. Wagner, Z. Electrochem, Z. Elektrochem. 65 (1961) 581.
    145. A. M. Gusak and K. N. Tu, “Kinetic theory of flux-driven ripening” Phys. Rev. B 66 (2002) 115403.
    146. K. N. Tu and K. Zeng. “Tin-lead (SnPb) solder reaction in flip chip technology” Mater. Sci. Eng. R 34 (2001) 1.
    147. C. S. Huang, G. Y. Jang, and J. G. Duh, “Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps” J. Electron. Mater. 33 (2004) 283.
    148. M. O. Alam, Y. C. Chan, and K. N. Tu, “Effect of reaction time and P content on mechanical strength of the interface formed between eutectic Sn-Ag solder and Au/electroless Ni(P)/Cu bond pad” J. Appl. Phys. 94 (2003) 4108.
    149. W. Gierlotka, S. W. Chen, and S. K. Lin, “Thermodynamic description of the Cu-Sn system” J. Mater. Res. 22 (2007) 3158.
    150. K. J. Wang and J. G. Duh, “Shear and Pull Testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu Underbump Metallization During Aging” J. Electron. Mater. 38 (2009) 2534.
    151. K. E. Yazzie, H. X. Xie, J. J. Williams, and N. Chawla, “On the relationship between solder-controlled and intermetallic compound (IMC)-controlled fracture in Sn-based solder joints” Scripta Mater. 66 (2012) 586.
    152. L. M. Yin, X. P. Zhang, and C. Lu, J. “Size and volume effects on the strength of microscale lead-free solder joints” Electron. Mater. 38 (2009) 2179.
    153. H. Y. Chuang, T. L. Yang, M. S. Kuo, Y. J. Chen, J. J. Yu, C. C. Li, and C. R. Kao, “Critical concerns in soldering reactions arising from space confinement in 3-D IC packages” IEEE Trans. Device Mater. Reliab. 12 (2012) 233.
    154. R.W. Yang, Y. W. Chang, W. C. Sung, and C. Chen, “Precipitation of large Ag3Sn intermetallic compounds in SnAg2.5 microbumps after multiple reflows in 3D-IC packaging” Mater. Chem. Phys. 134 (2012) 340.
    155. F. Y. Ouyang and W. C. Jhu, “Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits” J. Alloys Compd. 580 (2013) 114.
    156. B. Arfaei, N. Kim, and E. J. Cotts, “Dependence of Sn Grain Morphology of Sn-Ag-Cu Solder on Solidification Temperature” J. Electron. Mater. 41 (2012) 362.
    157. F. X. Che, W. H. Zhu, E. S. W. Poh, X. W. Zhang, and X. R. Zhang, “The study of mechanical properties of Sn-Ag-Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures” J. Alloys Compd. 507 (2010) 215.
    158. M. Yang, Y. Cao, S. Joo, H. Chen, X. Ma, and M. Li, “Cu6Sn5 precipitation during Sn-based solder/Cu joint solidification and its effects on the growth of interfacial intermetallic compounds” J. Alloys Compd. 582 (2014) 688.
    159. J. E. Spinelli and A. Garcia, “Development of solidification microstructure and tensile mechanical properties of Sn-0.7Cu and Sn-0.7Cu-2.0Ag solders” J. Mater. Sci. 25 (2014) 478.
    160. Y. C. Huang, S. W. Chen, and K. S. Wu, “Size and substrate effects upon undercooling of Pb-Free solders” J. Electron. Mater. 39 (2010) 109.
    161. M. B. Zhou, X. Ma, and X. P. Zhang, “Undercooling Behavior and Intermetallic Compound Coalescence in Microscale Sn-3.0Ag-0.5Cu Solder Balls and Sn-3.0Ag-0.5Cu/Cu Joints” J. Electron. Mater. 41 (2012) 3169.
    162. W. Guan, Y. Gao, Q. Zhai, and K. Xu, “Effect of droplet size on nucleation undercooling of molten metals” J. Mater. Sci. 39 (2004) 4633.
    163. X. Deng, N. Chawla, K. K. Chawla, and M. Koopman, “Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation” Acta Mater. 52 (2004) 4291.
    164. E. Orowan, J. Nye, W. Cairns, MOS Arm. Res. Dept. Rept. 16 (1945) 35.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE