簡易檢索 / 詳目顯示

研究生: 蔡淑宜
Tsai, Shu-Yi
論文名稱: 應用延伸閘極電雙層場效電晶體感測器研究細胞膜電位在不同胞外刺激下的變化
Extended Gate Electric-Double-Layer (EDL) Field-Effect Transistors for Investigation in the Change of Transmembrane Potential under Extracellular Stimuli
指導教授: 王玉麟
Wang, Yu-Lin
口試委員: 李昇憲
陳榮治
董國忠
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 56
中文關鍵詞: 跨膜電位電晶體感測器藥物篩選離子通道
外文關鍵詞: transmembrane potential, FET sensors
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這項研究中,我們開發了一種非侵入性的快速藥物篩選平台,可通過使用延伸閘極電雙層場效電晶體感測器來檢測細胞靜止膜電位的變化。
    阻抗測量表明了虛部阻抗主導測試溶液中的閘極偏壓變化,證實了延伸閘極電雙層場效電晶體感測器的機制是透過電雙層結構的再分佈產生閘極偏壓變化並透過FET放大訊號。為了證實延伸閘極電雙層場效電晶體感測器在藥物篩選上的應用,我們加入了硝苯地平以及胞外鈣離子等胞外刺激,研究表明,我們的感測器具有在不同胞外刺激下區分極化靜止膜電位和去極化靜止膜電位的能力。維生素A酸等油性小分子由胞外擴散至胞內也可以通過感測器檢測到。此外,除化學刺激外,本研究還研究了人類角質細胞(HaCa T)細胞在物理傷害下(UVA)的實時電響應。基於這些結果,延伸閘極電雙層場效電晶體感測器已成功運用於諸如藥物篩選和離子通道研究等預期應用。


    In this study, a non-invasive platform was developed to detect the change of resting membrane potential of cells by using extended gate electric-double-layer (EDL) field-effect transistors. Resting membrane potential change is measured as drain current change resulted from the voltage drop within test solution generated by electric-double-layer structure re-distribution. Impedance measurement indicates that the imaginary part dominates the main voltage changes in the test solution. The sensor chip can be regarded as an equivalent capacitive model and conjugates with the signal amplification by field-effect transistors. This research demonstrates that our sensors have the ability to distinguish between polarized resting membrane potential and depolarized resting membrane potential under different extracellular stimuli. The diffusion of molecules such as retinoic acid into cell membranes can be detected by EDL FET sensors as well. Moreover, besides chemical stimuli, this research also investigated real-time electrical responses from physically damaged human keratinocyte (HaCaT) cells. Based on these results, EDL FET sensors can be successfully applied in prospective applications such as drug screening and ion channel studies.

    摘要 i ABSTRACT ii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Objective 3 Chapter 2 Literature Review 4 2.1 H9c2 cardiomyocytes and human keratinocytes HaCaT cells 4 2.2 All-trans-retinoic acid 6 2.3 Nifedipine 6 2.4 Traditional methods for cell membrane potential measurement 7 2.5 MTT Assay 9 2.6 Cell-based FET sensors 10 Chapter 3 Experimental 13 3.1 Fabrication of extended gate EDL sensor chips 13 3.2 Cell culture 14 3.3 Immobilization of fibronectin and cells 14 3.4 Reagents used 16 3.5 UVA irradiation and Trypan blue 16 3.6 Measurement method 17 Chapter 4 Results and Discussion 20 4.1 The mechanism of EDL FET sensors 21 4.2 The drain current in different conditions: bare gold, fibronectin/gelatin, H9c2 cells in different test solutions 24 4.3 Monitoring the retinoic acid uptake into H9c2 cells 27 4.3.1 Electrical result of the retinoic acid uptake into H9c2 cells using EDL FET sensors 27 4.3.2 Impedance measurement of the retinoic acid uptake into H9c2 cells 31 4.4 Detection of depolarized/polarized membrane potential of H9c2 cells 33 4.4.1 Nifedipine effect on H9c2 cells 33 4.4.2 Increasing extracellular calcium measurement in HBSS without calcium 38 4.4.3 Measurement in HBSS without Ca2+ exposing to increasing nifedipine levels. 42 4.4.4 Measurement of continuous change of Ca2+ concentration in HBSS without Ca2+ at different nifedipine levels 45 4.5 Real-time monitoring death of HaCa T keratinocytes under UVA radiation 47 Chapter 5 Summary and Future work 50 Reference 52

    1. Ashcroft FM. 1999. Ion channels and disease. Academic press.
    2. Wang P, Xu GX, Qin LF, Xu Y, Li Y, Li R. 2005. Cell-based biosensors and its application in biomedicine. Sens Actuator B-Chem. 108(1-2):576-584.
    3. Kiilerich-Pedersen K, Rozlosnik NJD. 2012. Cell-based biosensors: Electrical sensing in microfluidic devices. 2(4):83-96.
    4. Wickenden A, Priest B, Erdemli G. 2012. Ion channel drug discovery: Challenges and future directions. Future medicinal chemistry. 4(5):661-679.
    5. Clare JJ. 2010. Targeting ion channels for drug discovery. Discovery medicine. 9(46):253-260.
    6. Camerino DC, Tricarico D, Desaphy J-F. 2007. Ion channel pharmacology. Neurotherapeutics. 4(2):184-198.
    7. te Winkel JD, Gray DA, Seistrup KH, Hamoen LW, Strahl H. 2016. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Frontiers in cell and developmental biology. 4:29.
    8. Veigas B, Fortunato E, Baptista PV. 2015. Field effect sensors for nucleic acid detection: Recent advances and future perspectives. Sensors. 15(5):10380-10398.
    9. Namdari P, Daraee H, Eatemadi A. 2016. Recent advances in silicon nanowire biosensors: Synthesis methods, properties, and applications. Nanoscale research letters. 11(1):406.
    10. Pulikkathodi AK, Sarangadharan I, Lo C-Y, Chen P-H, Chen C-C, Wang Y-L. 2018. Miniaturized biomedical sensors for enumeration of extracellular vesicles. International journal of molecular sciences. 19(8):2213.
    11. Watkins SJ, Borthwick GM, Arthur HMJIVC, Biology-Animal D. 2011. The h9c2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. 47(2):125-131.
    12. Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G. 1991. Morphological, biochemical, and electrophysiological characterization of a clonal cell (h9c2) line from rat-heart. Circulation Research. 69(6):1476-1486.
    13. Colombo I, Sangiovanni E, Maggio R, Mattozzi C, Zava S, Corbett Y, Fumagalli M, Carlino C, Corsetto PA, Scaccabarozzi D. 2017. Hacat cells as a reliable in vitro differentiation model to dissect the inflammatory/repair response of human keratinocytes. Mediators of inflammation. 2017.
    14. Lenčo J, Lenčová-Popelová O, Link M, Jirkovská A, Tambor V, Potůčková E, Stulík J, Šimůnek T, Štěrba M. 2015. Proteomic investigation of embryonic rat heart-derived h9c2 cell line sheds new light on the molecular phenotype of the popular cell model. Experimental cell research. 339(2):174-186.
    15. Lee H, Vilian AE, Kim JY, Chun MH, Suh JS, Seo HH, Cho SH, Shin IS, Kim SJ, Park SH. 2017. Design and development of caffeic acid conjugated with bombyx mori derived peptide biomaterials for anti-aging skin care applications. RSC advances. 7(48):30205-30213.
    16. Li M, Sun Y, Guan X, Shu X, Li C. 2014. Advanced progress on the relationship between ra and its receptors and malignant tumors. Crit Rev Oncol Hematol. 91(3):271-282.
    17. Szanto A, Narkar V, Shen Q, Uray IP, Davies P, Nagy L. 2004. Retinoid x receptors: X-ploring their (patho) physiological functions. Cell Death & Differentiation. 11(2):S126-S143.
    18. Mangelsdorf DJ, Evans RM. 1995. The rxr heterodimers and orphan receptors. Cell. 83(6):841-850.
    19. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller CJC. 1992. 9-cis retinoic acid is a high affinity ligand for the retinoid x receptor. 68(2):397-406.
    20. Menard C, Pupier S, Mornet D, Kitzmann M, Nargeot J, Lory P. 1999. Modulation of l-type calcium channel expression during retinoic acid-induced differentiation of h9c2 cardiac cells. Journal of Biological Chemistry. 274(41):29063-29070.
    21. Uzieliene I, Bernotiene E, Rakauskiene G, Denkovskij J, Bagdonas E, Mackiewicz Z, Porvaneckas N, Kvederas G, Mobasheri A. 2019. The antihypertensive drug nifedipine modulates the metabolism of chondrocytes and human bone marrow-derived mesenchymal stem cells. Front Endocrinol (Lausanne). 10:756.
    22. Gibson JK, Yue Y, Bronson J, Palmer C, Numann R. 2014. Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents. J Pharmacol Toxicol Methods. 70(3):255-267.
    23. Franks CJ, Pemberton D, Vinogradova I, Cook A, Walker RJ, Holden-Dye L. 2002. Ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of caenorhabditis elegans. Journal of neurophysiology. 87(2):954-961.
    24. Sigworth F. 1995. Electronic design of the patch clamp. Single-channel recording. Springer. p. 95-127.
    25. Bräuner T, Hülser DF, Strasser RJ. 1984. Comparative measurements of membrane potentials with microelectrodes and voltage-sensitive dyes.
    26. Lindau M, Neher E. 1988. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflügers Archiv. 411(2):137-146.
    27. Fiala T, Wang J, Dunn M, Šebej P, Choi SJ, Nwadibia EC, Fialova E, Martinez DM, Cheetham CE, Fogle KJ. 2020. Chemical targeting of voltage sensitive dyes to specific cells and molecules in the brain. Journal of the American Chemical Society.
    28. Farinas J, Chow AW, Wada HG. 2001. A microfluidic device for measuring cellular membrane potential. Anal Biochem. 295(2):138-142.
    29. Zochowski M, Wachowiak M, Falk CX, Cohen LB, Lam Y-W, Antic S, Zecevic D. 2000. Imaging membrane potential with voltage-sensitive dyes. The Biological Bulletin. 198(1):1-21.
    30. Van Meerloo J, Kaspers GJ, Cloos J. 2011. Cell sensitivity assays: The mtt assay. Cancer cell culture. Springer. p. 237-245.
    31. Abe R, Ueo H, Akiyoshi T. 1994. Evaluation of mtt assay in agarose for chemosensitivity testing of human cancers: Comparison with mtt assay. Oncology. 51(5):416-425.
    32. Kumar P, Nagarajan A, Uchil PD. 2018. Analysis of cell viability by the mtt assay. Cold Spring Harbor Protocols. 2018(6):pdb. prot095505.
    33. Fanigliulo A, Accossato P, Adami M, Lanzi M, Martinoia S, Paddeu S, Marodi MT, Rossi A, Sartore M, Grattarola M et al. 1996. Comparison between a laps and an fet-based sensor for cell-metabolism detection. Sens Actuator B-Chem. 32(1):41-48.
    34. Xu G, Ye X, Qin L, Xu Y, Li Y, Li R, Wang P. 2005. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens Bioelectron. 20(9):1757-1763.
    35. Dantism S, Takenaga S, Wagner T, Wagner P, Schöning MJ. 2017. Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors. Electrochimica Acta. 246:234-241.
    36. Wrobel G, Seifert R, Ingebrandt S, Enderlein J, Ecken H, Baumann A, Kaupp UB, Offenhäusser A. 2005. Cell-transistor coupling: Investigation of potassium currents recorded with p-and n-channel fets. Biophysical journal. 89(5):3628-3638.
    37. Yu J, Jha SK, Xiao L, Liu Q, Wang P, Surya C, Yang M. 2007. Algan/gan heterostructures for non-invasive cell electrophysiological measurements. Biosens Bioelectron. 23(4):513-519.
    38. Zhang QZ, Tu HL, Yin HX, Wei F, Zhao HB, Xue CL, Wei QH, Zhang ZH, Zhang X, Zhang SM et al. 2018. Si nanowire biosensors using a finfet fabrication process for real time monitoring cellular ion actitivies. 2018 ieee international electron devices meeting.
    39. Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM. 2010. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano letters. 10(3):1098-1102.
    40. Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhäusser A, Garrido JA. 2011. Graphene transistor arrays for recording action potentials from electrogenic cells. Advanced Materials. 23(43):5045-5049.
    41. Gross GW, Harsch A, Rhoades BK, Göpel W. 1997. Odor, drug and toxin analysis with neuronal networks in vitro: Extracellular array recording of network responses. Biosensors and Bioelectronics. 12(5):373-393.
    42. Zhang A, Cheng TP, Altura BM. 1992. Magnesium regulates intracellular free ionized calcium concentration and cell geometry in vascular smooth muscle cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 1134(1):25-29.
    43. Pulikkathodi AK, Sarangadharan I, Chen YH, Lee GY, Chyi JI, Lee GB, Wang YL. 2018. Dynamic monitoring of transmembrane potential changes: A study of ion channels using an electrical double layer-gated fet biosensor. Lab Chip. 18(7):1047-1056.
    44. Pulikkathodi AK, Sarangadharan I, Hsu C-P, Chen Y-H, Hung L-Y, Lee G-Y, Chyi J-I, Lee G-B, Wang Y-L. 2018. Enumeration of circulating tumor cells and investigation of cellular responses using aptamer-immobilized algan/gan high electron mobility transistor sensor array. Sensors and Actuators B: Chemical. 257:96-104.
    45. Huang J, Xian H, Bacaner M. 1992. Long-chain fatty acids activate calcium channels in ventricular myocytes. Proceedings of the National Academy of Sciences. 89(14):6452-6456.
    46. Gibson JK, Yue Y, Bronson J, Palmer C, Numann R. 2014. Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents. Journal of pharmacological and toxicological methods. 70(3):255-267.
    47. Huberman L, Gollop N, Mumcuoglu K, Block C, Galun R. 2007. Antibacterial properties of whole body extracts and haemolymph of lucilia sericata maggots. Journal of wound care. 16(3):123-127.
    48. Novo D, Perlmutter NG, Hunt RH, Shapiro HM. 1999. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry: The Journal of the International Society for Analytical Cytology. 35(1):55-63.
    49. Chai S, Webb RC. 1992. Extracellular calcium, contractile activity and membrane potential in tail arteries from genetically hypertensive rats. Journal of hypertension. 10(10):1137-1143.
    50. Douglas W, Kanno T, Sampson S. 1967. Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarizing effect of acetycholine. The Journal of physiology. 191(1):107-121.
    51. Holly FJ, Dolowy K, Yamada KM. 1984. Comparative surface chemical studies of cellular fibronectin and submaxillary mucin monolayers: Effects of ph, ionic strength, and presence of calcium ions. Journal of colloid and interface science. 100(1):210-215.
    52. Pulikkathodi AK, Sarangadharan I, Chen Y-H, Lee G-Y, Chyi J-I, Lee G-B, Wang Y-L. 2018. Dynamic monitoring of transmembrane potential changes: A study of ion channels using an electrical double layer-gated fet biosensor. Lab on a Chip. 18(7):1047-1056.
    53. Li X-T, Li X-Q, Hu X-M, Qiu X-Y. 2015. The inhibitory effects of ca 2+ channel blocker nifedipine on rat kv2. 1 potassium channels. PLoS One. 10(4):e0124602.
    54. Qiu X-Y, Li K, Li X-Q, Li X-T. 2016. The inhibitory effects of nifedipine on outward voltage-gated potassium currents in mouse neuroblastoma n2a cells. Pharmacological Reports. 68(3):631-637.
    55. Gao Z, Sun H, Chiu S-W, Lau C-P, Li G-R. 2005. Effects of diltiazem and nifedipine on transient outward and ultra-rapid delayed rectifier potassium currents in human atrial myocytes. British journal of pharmacology. 144(4):595.
    56. Narayanapillai S, Agarwal C, Tilley C, Agarwal R. 2012. Silibinin is a potent sensitizer of uva radiation‐induced oxidative stress and apoptosis in human keratinocyte hacat cells. Photochemistry and photobiology. 88(5):1135-1140.
    57. Karthikeyan R, Kanimozhi G, Prasad NR, Agilan B, Ganesan M, Srithar G. 2018. Alpha pinene modulates uva-induced oxidative stress, DNA damage and apoptosis in human skin epidermal keratinocytes. Life sciences. 212:150-158.
    58. Hseu Y-C, Chou C-W, Kumar KS, Fu K-T, Wang H-M, Hsu L-S, Kuo Y-H, Wu C-R, Chen S-C, Yang H-L. 2012. Ellagic acid protects human keratinocyte (hacat) cells against uva-induced oxidative stress and apoptosis through the upregulation of the ho-1 and nrf-2 antioxidant genes. Food and Chemical Toxicology. 50(5):1245-1255.

    QR CODE