簡易檢索 / 詳目顯示

研究生: 莊幸珊
Shin-Shan Zhuang
論文名稱: Face Detection in Compressed Domain with Convolutional Neural Network
結合迴旋神經網路在壓縮領域下之人臉偵測
指導教授: 賴尚宏
Shang-Hong Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 54
中文關鍵詞: 人臉偵測壓縮領域迴旋神經網路
外文關鍵詞: face detection, compressed domain, Convolutional Neural Network
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在索引影片或影像的時候,人臉通常都能提供非常有用資訊,在這篇論文中,我們提出了一個人臉偵測系統,結合使用迴旋神經網路(Convolutional Neural Network)機器學習演算法,在以最新的壓縮規格H.264編碼的影片中進行人臉偵測。我們的系統只需要輸入壓縮資料中的DCT係數,就能夠找出人臉的位置,因此我們可以在壓縮的領域下進行人臉偵測,而不需要將影片完全解碼,如此一來,無論在編碼或者解碼影片的時候都可以用我們的系統架構去偵測人臉位置。一般而言,人臉在影像中通常都是人類視覺上比較注意並有興趣的區域,如果我們能再壓縮影片的最後一個步驟(entropy coding)之前先知道這樣的區域,我們便能改變一些編碼的參數來分配資源,例如將多一點的空間與運算時間花在這樣的區域上。我們實做了H.264中intra frame的編碼流程,並做了很多實驗來證明我們人臉偵測系統能夠有很好的性能。


    Contents LIST OF FIGURES II LIST OF TABLES III 1. INTRODUCTION 1 1.1. INTRA PREDICTION IN H.264 ENCODER 2 1.1.1. Luma 4x4 prediction mode 2 1.1.2. Luma 16x16 prediction mode and Chroma 8x8 prediction mode 3 1.2. THE DCT TRANSFORM 4 1.3. FACE DETECTION 5 1.4. MAIN CONTRIBUTIONS 7 1.5. THESIS ORGANIZATION 8 2. PREVIOUS WORK 9 2.1. LEARNING-BASED FACE DETECTION 9 2.2. FACE DETECTION IN COMPRESSED DOMAIN 13 3. FACE DETECTION ALGORITHM DESIGN 15 3.1. FEATURE VECTOR FOR FACE DETECTION 15 3.2. CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE 18 3.3. TRAINING METHODOLOGY 22 3.4. FACE LOCALIZATION 27 4. EXPERIMENTAL RESULTS 36 4.1. THE TESTING SET 36 4.2. ROTATION SENSITIVITY ANALYSIS 38 4.3. ACCURACY ANALYSIS 40 4.4. RESTRICTION AND DISCUSSION 47 5. CONCLUSIONS 49 BIBLIOGRAPHY 50

    Bibliography
    [1] “Application and requirements for scalable video coding,” ISO/IEO JTC1/SC29/WG11/N5880. Trondheim, Norway, July 2003.
    [2] T. Wiegand, G. J. Sullivan, G.. Bjontegaard and A. Luthra, “Overview of the H.264/AVC Video Coding Standard,” IEEE Trans. Circuits, Syst., Video Technol., Vol. 13, No. 7, July 2003.
    [3] Y. S. Ho and A. Gersho, “Classified transform coding of images using vector quantization,” IEEE Int. Conf. ASSP, May 1989, pp.1890-1893.
    [4] M. Yang, D. Kriegman, and N. Ahuja, ”Detecting Faces in Images: A Survey,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.24, no.1, pp. 34-58, Jan. 2002.
    [5] E.Hjelmas and B.K. Low, “Face Detection: A Survey,” Computer Vision and Image Understanding, vol.83, pp. 236-274, 2001.
    [6] V. Govindaraju, “Locating Human Faces in Photographs,” Int’l J. Computer Vision, vol.19, no. 2, pp129-146, 1996.
    [7] G. Yang and T.S. Huang, “Human Face Detection in Complex Background,” Pattern Recognition, vol. 27, no.1, pp. 83-63, 1994.
    [8] C. Garcia and G. Tziritas, “Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis,” IEEE Trans. Multimedia, vol. 1, no. 3, pp. 264-277, 1999.
    [9] R. Fe´raud, O. Bernier, J. Viallet, and M. Collobert, “A Fast and Accurate Face Detector Based on Neural Networks,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 1, pp. 42-53, Jan. 2002.
    [10] B. Low and M. Ibrahim, “A Fast and Accurate Algorithm for Facial Feature Segmentation,” Proc. Int’l Conf. Image Processing, 1997.
    [11] C.C. Lin and W.C. Lin, “Extracting Facial Features by an Inhibitory Mechanism Based on Gradient Distributions,” Pattern Recognition, vol. 29, pp. 2079-2101, 1996.
    [12] J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural Computation. Reading, Mass.: Addison-Wesley Publishing Company, 1991.
    [13] D. Roth, M.-H. Yang, and N. Ahuja, “A SNoW-Based Face Detector,” Advances in Neural Information Processing Systems 12, pp. 855-861, MIT Press, 2000.
    [14] P. N. Bellhumer, J. Hespanha, and D. Kriegman. “Eigenfaces vs. fisherfaces: Recognition using class specific linear projection”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, issue 7, pp. 711-720, Jan. 1997.
    [15] Daniel B Graham and Nigel M Allinson, “Characterizing Virtual Eigensignatures for General Purpose Face Recognition”, Face Recognition: From Theory to Applications, NATO ASI Series F, Computer and Systems Sciences, vol. 163, pp 446-456, 1998.
    [16] The BioID face database [http://www.bioid.com/downloads/facedb/facedatabase.html].
    [17] P. Viola and M. Jones, “Robust Real-Time Face Detection.,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, May 2004
    [18] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin, “The QBIC project: Querying images by content using color, texture and shape,” in SPIE 1993 Int. Symp. Electronic Imaging: Science and Technology, Conf. 1908, Storage and Retrieval for Image and Video Databases, Feb. 1993, pp. 173–187.
    [19] S.-F. Chang and J. R. Smith, “Extracting multi-dimensional signal features for content-based visual query,” in SPIE Symp. Visual Communications and Signal Processing, May 1995, pp. 995–1006.
    [20] E. Osuna, R. Freund, and F. Girosi, “Training Support Vector Machines: An Application to Face Detection,” IEEE Conf. Computer Vision and Pattern Recognition, pp. 130-136, 1997.
    [21] H. Rowley, S. Baluja, and T. Kanade, “Neural Network-Based Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 23-38, Jan. 1998.
    [22] K.K. Sung, “Learning and Example Selection for Object and Pattern Detection,” PhD thesis, MIT AI lab, 1996. also available as MIT tech. Report AITR 1572.
    [23] M.-H. Yang and N. Ahuja, ”Face detection using a mixture of factor analyzers,” IEEE ICIP, Kobe, Japan, 1999.
    [24] P. Viola and M. Jones, “Rapid Object Detection Using a Boosted Cascade of Simple Features,” Proc. Int’l Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 511-518, 2001.
    [25] K. Sung and T. Poggio, “Example-Based Learning for View-Based Human Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 39-51, Jan. 1998.
    [26] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network,” Advances in Neural Information Processing Systems 2, D. Touretzky, ed. Denver: Morgan Kaufman, pp. 396-404, 1990.
    [27] G. Martin, “Centered-Object Integrated Segmentation and Recognition of Overlapping Hand-Printed Characters,” Neural Computation, vol. 5, pp. 419-429, 1993.
    [28] J. Wang and J. Jean, “Multi-Resolution Neural Networks for Omnifont Character Recognition,” Proc. Int’l Conf. Neural Networks, vol. 3, pp. 1588-1593, 1993.
    [29] S. Lawrence, C. Gilles, A. Tsai, and A. Back, “Face Recognition: A Convolutional Neural Network Approach,” IEEE Trans. Neural Networks, vol. 8, no. 1, pp. 98-113, 1997.
    [30] C. Garcia and M. Delakis, “Convolutional Face Finder: A Neural Architecture for Fast and Robust Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1408-1423, Nov. 2004.
    [31] H. Wang and S.-F. Chang, “A highly efficient system for automatic face region detection in mpeg video,” IEEE Trans. CSVT, 7(4), 1997.
    [32] H. Luo and A. Eleftheriadis, “On Face Detection in the compressed Domain,” ACM Multimedia 2000 Los Angeles CA USA, pp.285-294.
    [33] OpenCV, http://www.sourceforge.net/projects/opencvlibrary

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE