研究生: |
游珮均 Pei-Chun Yiu |
---|---|
論文名稱: |
利用化學交聯法分析後突觸質密區(PSD)之蛋白結構 Analysis of protein organization of the postsynaptic density by chemical cross-linking method |
指導教授: |
張兗君
Yen-Chung Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | crosslinking method 、postsynaptic density 、PSD 、SAED 、three-layered protein complex 、TPC |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
後突觸質密區(postsynaptic density, PSD)是一個圓盤狀的蛋白質複合物(complex)。它位在後突觸端的下方,可以接受由前突觸端所傳遞的訊號,並與後突觸端訊息傳遞的調控有關。有許多研究使用不同的方法來探討PSD的組成蛋白質,像是一維電泳配合氨基酸定序的方法、二維電泳與immunoblotting及Edman degradation來分析PSD的組成蛋白質,更有一些研究是利用質譜儀與二維電泳結合,或是質譜儀與液相層析結合來分析PSD的組成蛋白質。對於在PSD中這些蛋白質的立體相對位置組成的巨大結構,通常會使用nuclear magnetic resonance(NMR)、cryo-electron microscopy, x-ray crystallography以及chemical cross-linking等方法進行研究。本篇論文的主要目的是去分析PSD較內層蛋白質。我們將DAPA agarose beads經過一連串的化學反應後(見下圖),將由10個胺基酸序列組成的peptides鍵結在beads上,將agarose beads 與SAED間距離增長(~7 nm)。我們在玻片表面建構了三層蛋白質結構模型 ( Three-layered proteins complex, TPC ) 驗證了bead-peptide-SAED可與離表面內7 nm範圍的蛋白質作用,予以分離。我們亦驗證了peptide-SAED (沒有接到agarose beads前)可以自由的穿過PSD結構,並在UV光照下與大部份PSD的組成蛋白作用,說明peptide-SAED對PSD的蛋白沒有選擇性。另外本研究亦指出,以acetic anhydride對bead表面primary amine修飾的反應條件,會使得peptide-Fmoc的N端保謢基被移除,而影響peptide-SAED在beads上的數量。本研究更指出我們或許可以利用一些更溫和的-NH2保護基,以增進bead-peptide-SAED的產率,或是更改primary amine修飾的反應條件,增加peptide-SAED在beads上的數量。在本篇論文的bead-peptide-SAED在未來可應用於分析PSD內部蛋白質結構的研究。
Apperson ML, Moon IS, Kennedy MB. (1996) Characterization of densin-180, a new brain-specific synaptic protein of the O-sialoglycoprotein family. J Neurosci. 16, 6839-6852.
Beesley PW, Mummery R, Tibaldi J. (1995) N-cadherin is a major glycoprotein component of isolated rat forebrain postsynaptic densities. J Neurochem. 64, 2288-2294.
Blitz AL, Fine RE. (1974) Muscle-like contractile proteins and tubulin in synaptosomes. Proc Natl Acad Sci U S A. 71, 4472-4476.
Blomberg F, Cohen RS, Siekevitz P. (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol. 74, 204-225.
Bradford, M. M. (1976) The Bradford assay. Anal. Biochem. 72, 248.
Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS. (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell. 84, 757-767.
Carlin RK, Bartelt DC, Siekevitz P. (1983) Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations. J Cell Biol. 96, 443-448.
Carlin, R.K., Grab D.J. and Siekevitz, P. (1982) Postmortem accumulation of tubulin in postsynaptic density preparations. J. Neurochem. 38, 94-100.
Carlin, R.K., Grab, D.J., Cohen, R.S. and Siekevitz, P. (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J. Cell Biol. 86, 831-843.
Carlin RK, Siekevitz P. (1984) Characterization of Na+-independent GABA and flunitrazepam binding sites in preparations of synaptic membranes and postsynaptic densities isolated from canine cerebral cortex and cerebellum. J Neurochem. 43, 1011-1007.
Carr DW, Stofko-Hahn RE, Fraser ID, Cone RD, Scott JD. (1992) Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J Biol Chem. 267, 16816-19823.
Cho, K. O., Hunt, C. A., and Kennedy, M. B. (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discslarge tumor suppressor protein. Neuron. 9, 929-942.
Cohen RS, Blomberg F, Berzins K, Siekevitz P. (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol. 74, 181-203.
Cotman CW, Banker G, Churchill L, Taylor D. (1974) Isolation of postsynaptic densities from rat brain. J Cell Biol. 63, 441-455.
Dosemeci A, Reese TS. (1995) Effect of calpain on the composition and structure of postsynaptic densities. Synapse. 20, 91-97.
Faddis BT, Hasbani MJ, Goldberg MP. (1997) Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. J Neurosci. 17, 951-959.
Fukunaga, K., Goto, S. and Miyamoto, E. (1988) Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase in rat brain and Ⅱ various tissues. J. Neurochem. 51, 1070-1078.
Greg T. Hermanson (1992), in “immobilized affinity ligand techniques”, Academic press, pp
Hayashi Y, Ishida A, Katagiri H, Mishina M, Fujisawa H, Manabe T, Takahashi T. (1997) Calcium- and calmodulin-dependent phosphorylation of AMPA type glutamate receptor subunits by endogenous protein kinases in the post-synaptic density. Brain Res Mol Brain Res. 46, 338-342.
Hunt CA, Schenker LJ, Kennedy MB. (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci. 16, 1380-1388.
Joel D. Pardee, James A. Spudich (1982 ) Purification of muscle actin. Methods in enzymology. 85, 164-181.
Kaech, S., Fischer, M., Doll, T., and Matus, A. (1997) Isoform specificity in the relationship of actin to dendritic spines. J Neurosci. 17, 9565-9572.
Kelly, P.T., McGuinness, T.L. and Greengard, P. (1984) Evidence that the ajor postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. USA. 81, 945-949.
Kelly PT, Cotman CW. (1978) Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J Cell Biol. 79, 173-183.
Kennedy, M.B. (1997) The postsynaptic density at glutamatergic synapses. TINS. 20, 264-268.
Kim TW, Wu K, Xu JL, Black IB. (1992) Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 89, 11642-33644.
Kim E, Cho KO, Rothschild A, Sheng M. (1996) Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron. 17, 103-113.
Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M. (1995) Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature. 378, 85-88.
Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 269, 1737-1740.
Lidov HG, Byers TJ, Watkins SC, Kunkel LM. (1990) Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature. 348, 725-728.
M. Bodanszky(1993), in “Principles of Peptide Synthesis, 2nd Edition”, Springer-Berlag, pp106.
Matus AI, Taff-Jones DH. (1978) Morphology and molecular composition of isolated postsynaptic junctional structures. Proc R Soc Lond B Biol Sci. 203, 135-151.
Matus A, Ackermann M, Pehling G. (1981) Regularity and differentiation within the structure of brain postsynaptic densities. J Neurocytol. 10, 889-896.
Matus AI, Walters BB. (1975) Ultrastructure of the synaptic junctional lattice isolated from mammalian brain. J Neurocytol. 4, 369-375.
Matus A, Pehling G, Ackermann M, Maeder J. (1980) Brain postsynaptic densities: the relationship to glial and neuronal filaments. J Cell Biol. 87, 346-359.
Moon, I.S., Apperson, M.L. & Kennedy, M.B. (1994) The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. Proc. Natl. Acad. Sci. USA. 91, 3954–3958.
Muller BM, Kistner U, Kindler S, Chung WJ, Kuhlendahl S, Fenster SD, Lau LF, Veh RW, Huganir RL, Gundelfinger ED, Garner CC. (1996) SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron. 17, 255-265.
Mummery R, Sessay A, Lai FA, Beesley PW. (1996) Beta-dystroglycan: subcellular localisation in rat brain and detection of a novel immunologically related, postsynaptic density-enriched protein. J Neurochem. 66, 2455-2459.
Ouimet, C.C., McGuinness, T.L. and Greengard P. (1984) Immunocytochemical localization of calcium/calmodulin-dependent protein kinase in rat brain. Ⅱ Proc. Natl. Acad. Sci. USA. 81, 5604-5608.
Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M. (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem. 279, 21003-21011.
Satoh, K., Takeuchi, M., Oda, Y., DeguchiTawarada, M., Sakamoto, Y., Matsubara, K., Nagasu, T., and Takai, Y. (2002) Identification of activityregulated proteins in the postsynaptic density fraction. Genes Cells. 7, 187-197.
Szu-Heng Liu, Huei-Hsuan Cheng, San-Yuan Huang, Pei-Chun Yiu and Yen-Chung Chang (2006) Studying the protein organization of the postsynaptic density by a novel solid-phase- and chemical crosslinking-based technology. Mol Cell Proteomics. 5, 1019-1032.
Suzuki, T., Okumura-Noji, K., Tanaka, R., Ogura, A., Kyoko, N., Kudo, Y. and Tada, T. (1993) Characterization of protein kinase C activities in postsynaptic density fractions prepared from cerebral cortex, hippocampus, and cerebellum. Brain Res. 619, 69-75.
Togashi, H., Abe, K., Mizoguchi, A., Takaoka, K., Chisaka, O., and Takeichi, M. (2002) Cadherin regulates dendritic spine morphogenesis. Neuron. 35, 77-89.
Vinade L, Petersen JD, Do K, Dosemeci A, Reese TS. (2001) Activation of calpain may alter the postsynaptic density structure and modulate anchoring of NMDA receptors. Synapse. 40, 302-309.
Walikonis, R. S., Jensen, O. N., Mann, M., Provance, D. W., Jr., Mercer, J. A., and Kennedy, M. B. (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci. 20, 4069-4080.
Walters BB, Matus AI. (1975) Tubulin in postynaptic junctional lattice. Nature. 257, 496-498.
Walsh, M. J., and Kuruc, N. (1992) The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J Neurochem. 59, 667-678.
Wolf M, Burgess S, Misra UK, Sahyoun N. (1986) Postsynaptic densities contain a subtype of protein kinase C. Biochem Biophys Res Commun. 140, 691-698.
Wu K, Carlin R, Sachs L, Siekevitz P. (1985) Existence of a Ca2+-dependent K+ channel in synaptic membrane and postsynaptic density fractions isolated from canine cerebral cortex and cerebellum, as determined by apamin binding. Brain Res. 360, 183-194.
Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM, Sheng M. (1997) Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature. 385, 439-442.
Yoshimura Y, Yamauchi Y, Shinkawa T, Taoka M, Donai H, Takahashi N, Isobe T, Yamauchi T. (2004) Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J Neurochem. 88, 759-768.
Zagon IS, Higbee R, Riederer BM, Goodman SR. (1986) Spectrin subtypes in mammalian brain: an immunoelectron microscopic study. J Neurosci. 6, 2977-2986.
賴森林 (1998) 後突觸質密區結構之研究-蛋白質間雙硫鍵的形成與影響 國立清華大學生命科學所碩士論文