研究生: |
陳薏涵 Chen, Yi Han |
---|---|
論文名稱: |
奈米複合材料薄膜與板材之奈米補強效應之研究 Investigation of Improvement on Nano Materials for Film and Bulk Composites |
指導教授: |
蔡宏營
Tsai, Hung Yin |
口試委員: |
葉銘泉
Yip, Ming Chuen 葉維磬 Yeh, Wei-Ching |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 氧代氮代苯并環己烷樹脂 、環氧樹脂 、奈米碳管 、石墨烯片 、板材 、薄膜 、複合材料 、碳纖維積層板 、機械性質 、扭轉疲勞 |
外文關鍵詞: | Benzoxazine, Epoxy, Carbon nanotube, Graphene nanoplates, Bulk, Film, Composite, Carbon fiber reinforced polymer, Mechanical properties, Torsion fatigue |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究欲透過氧代氮代苯并環己烷樹脂改質環氧樹脂,並藉由添加奈米碳管和石墨烯片來提升複合材料之機械性質及疲勞壽命。將探討以下幾點:(1)氧代氮代苯并環己烷樹脂添加量對高分子機械性質之影響;(2)添加單一補強材奈米碳管添加量對複合材料機械性質之影響;(3)混摻兩相補強材石墨烯片和奈米碳管對複合材料機械性質之影響;(4)選取最佳比例製成碳纖維積層板,探討奈米碳材對機械性質及疲勞壽命之補強效果;(5)試片皆分為板材試片與薄膜試片,探討其增益效果。
研究結果指出適當混摻氧代氮代苯并環己烷樹脂和環氧樹脂,有助於拉伸及彎曲性質提升,但對於抗衝擊強度是下降的。不論是添加奈米碳管還是混摻兩相補強材石墨烯片和奈米碳管皆有助於拉伸、彎曲及抗衝擊強度提升,但過量會因其幾何特徵與表面位能造成團聚堆疊而使性質下降。從碳纖維積層板實驗結果指出,機械性質(拉伸、彎曲、抗衝擊、層間剪切、扭轉和扭轉疲勞)皆有補強,是因為奈米碳材增加樹脂與纖維介面之咬合,使得介面強度提高,機械性質和扭轉疲勞得以提升。
比較板材試片與薄膜試片之拉伸強度增益率,皆是薄膜試片較佳,故可藉由控制厚度,減少高分子內部的流動行為,進而降低奈米碳材某一方向的吸附,提高分散性。
Bisphenol-F-based benzoxazine was copolymerized with epoxy to improve matrix's mechanical properties. Polymer composites reinforced with hybrid GNTs (carbon nanotube, CNT, and graphene nanoplates, GNPs) were fabricated by hot pressing to enhance the mechanical properties and fatigue life. This research includes: (1) The effect of varied benzoxazine content on mechanical properties of the composites. (2) The effect of varied CNT content on mechanical properties of the composites. (3) The synergetic effect of varied GNP and CNT content on mechanical properties of the composites. (4) The enhancement of hybrid GNTs on mechanical properties and fatigue life of laminate composites. (5) The improvement on nano materials for film and bulk composites.
The results show that correct mixture of benzoxazine and epoxy can improve tensile and flexural properties, but decrease impact strength. CNT and hybrid GNTs also improve the mechanical properties of composites. However, when the amount of reinforcement exceeds certain amount, the aggregation will occur because of their geometric characteristic and then decrease the mechanical properties. The carbon fiber reinforced polymer(CFRP) results show that all mechanical properties(tensile, flexural, impact, ILSS, torsion and torsion fatigue) are increase due to hybrid GNTs improve the interfacial strengths between fiber and matrix.
From bulk and film strength increasing rate, all the experimental results show that film is better than bulk. Controlling the thickness of the material decreases the degree of aggregation and then improve the dispersion.
[1] 許明發 and 郭文雄, 1998, 複合材料, 高立圖書有限公司, 台北市.
[2] 張豐志, 2003, 應用高分子手冊, 五南圖書出版股份有限公司, 台北市.
[3] Iijima, S., 1991, "Helical microtubules of graphitic carbon," Nature, 354(6348), pp. 56-58.
[4] Ruoff, R. S. and Lorents, D. C., 1995, "Mechanical and thermal properties of carbon nanotubes," Carbon, 33(7), pp. 925-930.
[5] Treacy, M. M. J., Ebbesen, T. W. and Gibson, J. M., 1996, "Exceptionally high Young's modulus observed for individual carbon nanotubes," Nature, 381(6584), pp. 678-680.
[6] Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F. and Thio, T., 1996, "Electrical conductivity of individual carbon nanotubes," Nature, 382(6586), pp. 54-56.
[7] Pop, E., Mann, D., Wang, Q., Goodson, K. and Dai, H., 2006, "Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature," Nano Letters, 6(1), pp. 96-100.
[8] 黃淑娟, 2011, "新碳材時代-從奈米碳管到石墨烯," 工業材料雜誌.
[9] Geim, A. K. and Novoselov, K. S., 2007, "The rise of graphene," Nat Mater, 6(3), pp. 183-191.
[10] Lee, C., Wei, X., Kysar, J. W. and Hone, J., 2008, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, 321(5887), pp. 385-388.
[11] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C. N., 2008, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Letters, 8(3), pp. 902-907.
[12] Riccardi, C. C. and Williams, R. J. J., 1986, "A kinetic scheme for an amine-epoxy reaction with simultaneous etherification," Journal of Applied Polymer Science, 32(2), pp. 3445-3456.
[13] 王國書, 2007, "奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究," 碩士, 國立清華大學, 新竹市.
[14] Yeh, M.-K., Hsieh, T.-H. and Tai, N.-H., 2008, "Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites," Materials Science and Engineering: A, 483–484, pp. 289-292.
[15] Yu, N., Zhang, Z. H. and He, S. Y., 2008, "Fracture toughness and fatigue life of MWCNT/epoxy composites," Materials Science and Engineering: A, 494(1–2), pp. 380-384.
[16] Biercuk, M. J., Llaguno, M. C., Radosavljevic, M., Hyun, J. K., Johnson, A. T. and Fischer, J. E., 2002, "Carbon nanotube composites for thermal management," Applied Physics Letters, 80(15), pp. 2767-2769.
[17] Vahedi, F., Shahverdi, H. R., Shokrieh, M. M. and Esmkhani, M., 2014, "Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites," New Carbon Materials, 29(6), pp. 419-425.
[18] Prolongo, S. G., Jiménez-Suárez, A., Moriche, R. and Ureña, A., 2014, "Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites," European Polymer Journal, 53, pp. 292-301.
[19] Shen, X.-J., Liu, Y., Xiao, H.-M., Feng, Q.-P., Yu, Z.-Z. and Fu, S.-Y., 2012, "The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins," Composites Science and Technology, 72(13), pp. 1581-1587.
[20] Tang, L.-C., Wan, Y.-J., Yan, D., Pei, Y.-B., Zhao, L., Li, Y.-B., Wu, L.-B., Jiang, J.-X. and Lai, G.-Q., 2013, "The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites," Carbon, 60, pp. 16-27.
[21] Wang, F., Drzal, L., Qin, Y. and Huang, Z., 2015, "Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites," J Mater Sci, 50(3), pp. 1082-1093.
[22] 游俊盟, 2005, "馬來醯胺-氧代氮代苯并環己烷之合成、聚合及硬化樹脂研究," 碩士, 中原大學, 桃園縣.
[23] Holly, F. W. and Cope, A. C., 1944, "Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine," Journal of the American Chemical Society, 66(11), pp. 1875-1879.
[24] Shen, S. B. and Ishida, H., 1996, "Development and characterization of high-performance polybenzoxazine composites," Polymer Composites, 17(5), pp. 710-719.
[25] Ishida, H. and Low, H. Y., 1997, "A Study on the Volumetric Expansion of Benzoxazine-Based Phenolic Resin," Macromolecules, 30(4), pp. 1099-1106.
[26] Ishida, H. and Rodriguez, Y., 1995, "Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry," Polymer, 36(16), pp. 3151-3158.
[27] 廖進彬, 劉胭芝, 高健 and 蔡淑容, 2013, "苯並噁嗪樹脂改性研究," packaging journal, 5(3), pp. 36-40.
[28] Roger, T., K., R. and Tim, T., "Polybenzoxazine: New Chemistry," Huntsmen Co.
[29] Kiskan, B., Ghosh, N. N. and Yagci, Y., 2011, "Polybenzoxazine-based composites as high-performance materials," Polymer International, 60(2), pp. 167-177.
[30] Ishida, H. and Allen, D. J., 1996, "Physical and mechanical characterization of near-zero shrinkage polybenzoxazines," Journal of Polymer Science Part B: Polymer Physics, 34(6), pp. 1019-1030.
[31] Rao, B. S., Rajavardhana Reddy, K., Pathak, S. K. and Pasala, A. R., 2005, "Benzoxazine–epoxy copolymers: effect of molecular weight and crosslinking on thermal and viscoelastic properties," Polymer International, 54(10), pp. 1371-1376.
[32] Ishida, H. and Ohba, S., 2006, "Thermal analysis and mechanical characterization of maleimide-functionalized benzoxazine/epoxy copolymers," Journal of Applied Polymer Science, 101(3), pp. 1670-1677.
[33] Agag, T. and Takeichi, T., 2000, "Polybenzoxazine–montmorillonite hybrid nanocomposites: synthesis and characterization," Polymer, 41(19), pp. 7083-7090.
[34] Chen, Q., Xu, R. and Yu, D., 2006, "Multiwalled carbon nanotube/polybenzoxazine nanocomposites: Preparation, characterization and properties," Polymer, 47(22), pp. 7711-7719.
[35] Kaleemullah, M., Khan, S. U. and Kim, J.-K., 2012, "Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites," Composites Science and Technology, 72(16), pp. 1968-1976.
[36] Zeng, M., Wang, J., Li, R., Liu, J., Chen, W., Xu, Q. and Gu, Y., 2013, "The curing behavior and thermal property of graphene oxide/benzoxazine nanocomposites," Polymer, 54(12), pp. 3107-3116.
[37] An, J.-E. and Jeong, Y. G., 2013, "Structure and electric heating performance of graphene/epoxy composite films," European Polymer Journal, 49(6), pp. 1322-1330.
[38] Ghaleb, Z. A., Mariatti, M. and Ariff, Z. M., 2014, "Properties of graphene nanopowder and multi-walled carbon nanotube-filled epoxy thin-film nanocomposites for electronic applications: The effect of sonication time and filler loading," Composites Part A: Applied Science and Manufacturing, 58, pp. 77-83.
[39] Chen, W., Tao, X., Xue, P. and Cheng, X., 2005, "Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)–carbon nanotube composite films," Applied Surface Science, 252(5), pp. 1404-1409.
[40] Jiang, Q., Wang, X., Zhu, Y., Hui, D. and Qiu, Y., 2014, "Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites," Composites Part B: Engineering, 56, pp. 408-412.
[41] Saw, L. N., Mariatti, M., Azura, A. R., Azizan, A. and Kim, J. K., 2012, "Transparent, electrically conductive and flexible films made from multiwalled carbon nanotube/epoxy composites," Composites Part B: Engineering, 43(8), pp. 2973-2979.
[42] 吳文演, 2003, "碳素纖維之研製與應用," 台灣人纖工業會訊, 台灣科技大學.
[43] Coleman, J. N., Khan, U. and Gun'ko, Y. K., 2006, "Mechanical Reinforcement of Polymers Using Carbon Nanotubes," Advanced Materials, 18(6), pp. 689-706.
[44] Kim, C.-u., Kim, S.-j., Park, J.-c. and Song, J.-i., 2015, "Fabrication and Evaluation of Mechanical Properties of CF/GNP Composites," Procedia Manufacturing, 2, pp. 368-373.
[45] Glaskova-Kuzmina, T., Aniskevich, A., Zarrelli, M., Martone, A. and Giordano, M., 2014, "Effect of filler on the creep characteristics of epoxy and epoxy-based CFRPs containing multi-walled carbon nanotubes," Composites Science and Technology, 100, pp. 198-203.
[46] Reifsnider, K., Henneke, E., Stinchcomb, W. and Duke, J., 1983, "Damage mechanics and NDE of composite laminates," Mechanics of composite materials: Recent advances, pp. 399-420.
[47] Paris, P. and Erdogan, F., 1963, "A Critical Analysis of Crack Propagation Laws," Journal of Basic Engineering, 85(4), pp. 528-533.
[48] Hwang, W. and Han, K. S., 1986, "Fatigue of Composites—Fatigue Modulus Concept and Life Prediction," Journal of Composite Materials, 20(2), pp. 154-165.
[49] ASTM D638-10, Standard Test Method for Tensile Properties of Plastics, Annual Book of ASTM Standards.
[50] ASTM D882-02, Standard Test Method for Tensile Properties of Thin Plastic Sheeting, Annual Book of ASTM Standards.
[51] 2014, ASTM D3039/D3039m-14, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, Annual Book of ASTM Standards.
[52] 2010, ASTM D790-10, Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Annual Book of ASTM Standards.
[53] 2010, ASTM D256-10, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastic, Annual Book of ASTM Standards.
[54] 2006, ASTM D2344/D2344m-00, Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, Annual Book of ASTM Standards.
[55] 2007, ASTM D3479/D3479m-06, Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials.
[56] 2004, ASTM E739-91, Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (Ε-N) Fatigue Data.