簡易檢索 / 詳目顯示

研究生: 廖偉全
Wei-Chuan Liao
論文名稱: 使用大撓度理論探討奈米探針之結構行為及其參數化設計
Analysis and Design of the Nano-Probe Using Large Deflection Theory
指導教授: 江國寧
Kuo-Ning Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 105
中文關鍵詞: 原子力顯微鏡奈米探針解析度大撓度理論共振頻率彈簧常數有限元素法奈微機電加工製程掃瞄式探針微影術分子改質奈米探管陣列式探針接觸式非接觸式輕敲式
外文關鍵詞: Atomic Force Microscopy, Nano-Probe, Resolution, Large Deflection Theory, Resonant Frequency, Spring Constant, Finite Element Method, Fabrication of NENS, Scanning Probe Lithography, Molecular Modification, Carbon Nano-Tube, Array of Tips, Contact Mode, Non-Contact Mode, Tapping Mode
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在奈米科技發展中,原子力顯微鏡(AFM)是目前最廣為應用之掃瞄式探針顯微鏡(SPM)。具備高解析度之原子力顯微鏡除了可進行奈米等級量測的功能外,尚可應用於製造奈米材料、奈米元件、奈米加工與高密度資料儲存技術。而探針為原子力顯微鏡極關鍵的部分,其基本結構是由基座、懸臂樑及附於樑前端之尖銳針尖所組成。其中,探針針尖必須達奈米等級並具高深寬比,方可獲得高解析度的樣品表面形貌,並依所需AFM的操作模式而選用適當之彈簧常數和共振頻率的懸臂樑探針。
    彈簧常數與共振頻率乃原子力顯微鏡探針之基本機械性質。許多文獻在研究AFM探針之機械性質時,多是引用小撓度理論(Small Deflection Theory)之假設以求得。然小撓度理論假設只適用於當結構未發生幾何非線性(Geometry Nonlinear)之行為。隨著AFM的應用範圍越來越廣泛,使得其探針之幾何形狀或物理性質皆與傳統所應用有所不同,如:生物體之檢測需要幾何尺寸較小之探針、高解析度的表面形貌則可利用尖銳的針尖或增加外加力量來取得等。如此將使得探針結構發生幾何非線性之現象,則先前所考慮的小撓度理論將不再適用。故必須考慮懸臂樑之大撓度理論(Large Deflection Theory)假設,以求得探針結構發生幾何非線性現象時之物理與機械性質。所以本研究將使用大撓度撓度理論探討懸臂樑式探針之結構行為。分析結果發現,本研究所提出之大撓度理論假設,根據文獻之實驗驗證與有限元素分析,具相當可信度,可為吾人使用。其適用之範圍,乃施加之無因次負載在 內方適用。而當無因次負載為 ,大撓度理論與小撓度理論漸有分歧之趨勢。此外,本研究發現在進行奈米探針結構之有限元素分析時,皆需考慮幾何非線性行為,以避免此現象發生時,所產生的誤差。
    AFM視其所應用的範圍,一般所使用之探針必須具有:(1)低彈簧常數,(2)高共振頻率和(3)高尖銳度之針尖與深寬比。不同的探針外型和尺寸,其機械性質也會隨之改變,同時亦會影響量測出的樣品表面形貌及特性。目前的探針大多是利用奈微機電加工技術進行製造,因為容易達到微小化的尺寸且可大量生產,具有不錯的良率。應用電腦模擬軟體來進行探針之機械特性分析為一準確、快速且經濟之方法。因此本研究將應用有限元素法對三種AFM之探針外型,包括:矩型樑、V型樑以及導邊V型樑,進行分析探針的幾何外型改變,對其機械特性的影響。有限元素分析結果發現, V型樑及導邊V型樑之參數,對機械性質之影響,呈不規則現象。


    Atomic force microscopy (AFM) is a newly developed high- resolution microscopy technique, which is capable of measuring nano-scale patterns. In addition, AFM is very useful in nanofabrication, data storage and material analysis in the field of mechanical, chemical and biological engineering. A nano-probe is the most critical component of the AFM, which consists of three parts: a sharp tip, a cantilever beam and a supporting base. The tip must be sharp enough for high resolution of the surface topography. The cantilever beam must have an appropriate spring constant and a resonant frequency for the type of operation selected.
    The fundamental mechanical parameters in the nano-probe for the AFM are its spring constant, its resonant frequency and the geometry of the probed object. Literature indicates that researchers in the past only considered the small deflection theory when analyzing the physical properties of the nano-probe; the small deflection theory is suitable only when the object being probed does not undergo non-linear geometrical change. However, the application of nano-probe is becoming more and more extensive. The geometric dimensions or physical properties of nano-probe are different from traditional applications, as in cases such as the measuring of the red corpuscle, which needs a probe of smaller size, and the ultra-high resolution topography, which requires higher applied force. Non-linear geometry will be involved; therefore, the small deflection theory will be no longer suitable. Simulation results indicate that the large deflection theory proposed in this investigation is more feasible than the small deflection theory. When the value of the non-dimensional load reaches 1.875, the large deflection theory will be suitable for the analysis of the nano-probe. The variation between the small deflection theory and the large deflection theory occurs when the non-dimensional load reaches 0.75. Furthermore, when we analyze the nano-probe structure by FEM, we must consider the nonlinear geometry behavior to prevent the inaccuracy of simulation results.
    Depending on the various applications, the nano-probe structures used in the AFM should meet the following criteria: (1) good tip sharpness with a small radius apex, (2) small spring constant and (3) high resonant frequency. The mechanical parameters of a nano-probe will change with its shape and geometry, which affect the results of measurement. At present, the nano-probe is manufactured by micromachining technology. This method has many advantages, such as mass production, uniform geometry/properties and low cost. This research proposes the design rules of three types of nano-probes, the rectangular-shaped, V-shaped and chamfer V-shaped nano-probes for the AFM using the finite element method. Simulation results indicate that the parameters of V-shaped and chamfer V-shaped nano-probes have irregular effects on their mechanical properties.

    目 錄 Ⅰ 表目錄 Ⅲ 圖目錄 Ⅳ 第一章 導論 1.1研究動機……………………………………………………… 1 1.2文獻回顧……………………………………………………… 2 1.3研究目標……………………………………………………… 6 第二章 掃描式探針顯微鏡 2.1基本原理……………………………………………………… 8 2.2發展與應用…………………………………………………… 9 2.2.1掃描式穿隧顯微鏡………………………………………… 9 2.2.2掃描力顯微鏡……………………………………………… 10 2.2.3掃描式近場光學顯微鏡…………………………………… 10 2.2.4應用………………………………………………………… 11 2.3原子力顯微鏡………………………………………………… 14 2.3.1基本原理…………………………………………………… 14 2.3.2操作模式…………………………………………………… 14 2.3.3探針外型…………………………………………………… 16 2.3.4應用………………………………………………………… 18 第三章 探針之製程 3.1矽探針………………………………………………………… 20 3.2氮化矽探針…………………………………………………… 21 第四章 基本理論 4.1懸臂樑之頻率響應…………………………………………… 23 4.1.1自由振動…………………………………………………… 23 4.1.2樑之強制振動……………………………………………… 26 4.1.3樑之自由振動……………………………………………… 28 4.2懸臂樑之彈簧常數…………………………………………… 30 4.2.1小撓度之理論假設…………………………………… 30 □4.2.2大撓度之理論假設…………………………………… 31 第五章 研究方法 5.1矩型樑探針之撓度分析……………………………………… 38 5.1.1模型建構…………………………………………………… 38 5.1.2邊界條件與負載…………………………………………… 39 5.2各式探針之彈簧常數分析…………………………………… 39 5.2.1模型建構…………………………………………………… 40 5.2.2邊界條件與負載…………………………………………… 41 5.3各式探針之頻率響應分析…………………………………… 41 5.3.1模型建構…………………………………………………… 41 5.3.2邊界條件與負載…………………………………………… 41 第六章 分析結果與討論 6.1矩型樑探針之撓度分析結果及驗證………………………… 42 6.1.1小撓度理論與大撓度理論之比較………………………… 42 6.1.2有限元素分析之結果與理論之比較……………………… 45 6.1.3大撓度理論假設之驗證…………………………………… 46 6.2各式探針之機械特性分析結果K…………………………… 48 6.2.1矩型樑探針………………………………………………… 48 6.2.2 V型樑探針…………………………K…………………… 50 6.2.3導邊V型樑探針…………………………………………… 51 第七章 結論……………………………………………………… 53 參考文獻…………………K…………………………………… 56 表目錄 表2-1 常用顯微鏡之比較………………………………………… 61 表2-2 各種探針式資料儲存技術………………………………… 61 表2-3 各種微影技術之比較……………………………………… 62 表2-4 不同外型之AFM探針特性與操作模式…………………… 63 表5-1 矩型樑探針之有限元素模型幾何尺寸…………………… 63 表5-2 矩型樑探針之有限元素模型幾何尺寸分析參數………… 63 表5-3 .V型樑探針之有限元素模型幾何尺寸分析參數………… 63 表5-4 導邊V型樑探針之有限元素模型幾何尺寸分析參數…… 64 表5-5 探針之有限元素模型之材料參數………………………… 64 表6-1 理論求得懸臂樑自由端旋轉角與承受負載之結果關係… 64 表6-2 理論求得之懸臂樑自由端撓度與承受負載之結果關係… 65 表6-3 有限元素分析之矩型樑探針自由端撓度與負載之結果… 65 表6-4 文獻實驗結果與理論值之比較…………………………… 65 表6-5 矩型樑探針長度變化之機械特性有限元素分析結果…… 66 表6-6 矩型樑探針厚度變化之機械特性有限元素分析結果…… 66 表6-7 矩型樑探針寬度變化之機械特性有限元素分析結果…… 66 表6-8 V型樑探針內部長度變化之機械特性有限元素分析結果 67 表6-9 V型樑探針內部長度變化之機械特性有限元素分析結果 67 表6-10 V型樑探針厚度變化之機械特性有限元素分析結果…… 67 表6-11 V型樑探針底部夾角變化之機械特性有限元素分析結果 68 表6-12 導邊V型樑探針內部長度變化之機械特性有限元素分析 結果……………………………………………………… 68 表6-13 導邊V型樑探針厚度變化之機械特性有限元素分析結果 68 表6-14 導邊V型樑探針底部夾角變化之機械特性有限元素分析 結果……………………………………………………… 69 表6-15 導邊V型樑探針底部導邊長度變化之機械特性有限元素 □□ 分析結果………………………………………………… 69 圖目錄 圖2-1 掃瞄式探針顯微鏡架構………………………………… 70 圖2-2 掃瞄式穿遂顯微鏡原理………………………………… 70 圖2-3 掃瞄式穿遂顯微鏡之操作模式………………………… 71 圖2-4 掃瞄力顯微鏡架構……………………………………… 71 圖2-5 AFM導電探針在空氣中作局部氧化……………………… 72 圖2-6 AFM在矽晶片之微影……………………………………… 72 圖2-7 AFM蝕刻後之垂直結構…………………………………… 72 圖2-8 平行式多組掃描式探針微影系統架構………………… 73 圖2-9 平行式多組掃描式探針原理…………………………… 73 圖2-10 平行式多組掃描式探針之微影與蝕刻圖形…………… 73 圖2-11 探針針尖與樣品表面間之交互作用力與距離之曲線 … 74 圖2-12 接觸式AFM架構…………………………………………… 74 圖2-13 非接觸式AFM架構………………………………………… 75 圖2-14 探針外型:矩型樑和V型樑……………………………… 75 圖2-15 探針針尖側視…………………………………………… 76 圖2-16 不同針尖的高度對底寬比……………………………… 76 圖2-17 .AFM與FFM之探針偏移…………………………………… 77 圖3-1 掃瞄式矽探針之製作流程……………………………… 78 圖3-2 掃瞄式氮化矽探針之製作流程………………………… 79 圖3-3 SEM拍攝之矩型樑矽探針………………………………… 80 圖3-4 SEM拍攝之V型樑氮化矽探針與針尖放大……………… 80 圖4-1 懸吊彈簧質塊系統之慣性力與外力平衡……………… 81 圖4-2 懸吊彈簧與阻尼質塊系統之慣性力與外力平衡……… 81 圖4-3 樑示意圖………………………………………………… 81 圖4-4 微小段樑之慣性力與外力平衡………………………… 82 圖4-5 均勻懸臂樑與力自由體………………………………… 83 圖4-6 均勻懸臂樑之等效彈簧系統…………………………… 83 圖4-7 彎曲懸臂樑之撓曲線…………………………………… 84 圖4-8 大撓度之均勻懸臂樑與力自由體……………………… 84 圖5-1 矩型樑之掃瞄式探針上視圖………………K……K… 85 圖5-2 V型樑之掃瞄式探針上視圖……………………………… 85 圖5-3 導邊V型樑之掃瞄式探針上視圖………………………… 86 圖5-4 掃瞄式探針側視圖……………………………………… 86 圖5-5 探針針尖側視圖………………………………………… 87 圖5-6 矩型樑探針結構模型…………………………………… 87 圖5-7 V型樑探針結構模型……………………………………… 88 圖5-8 導邊V型樑探針結構模型………………………………… 88 圖5-9 探針針尖結構珓活K……………………………………… 89 圖5-10 邊界條件:基座之上下侷限…………………………… 89 圖5-11 施加負載於探針自由端………………………………… 90 圖6-1 理論解之懸臂樑自由端旋轉角與負載關係…………… 90 圖6-2 理論解之懸臂樑自由端旋轉角與無因次化負載關係… 91 圖6-3 理論解之懸臂樑自由端側向撓度與負載關係………… 91 圖6-4 有限元素分析之矩型樑探針自由端撓度與負載關係… 92 圖6-5 有限元素分析與理論解之撓度與負載關係之比較…… 92 圖6-6 懸臂樑之撓度實驗裝置以及實驗結果與理論比較…… 93 圖6-7 懸臂樑之之大撓度理論假設之實驗比對……………… 93 圖6-8 矩型樑探針之自由振動第一模態………………………… 94 圖6-9 矩型樑探針之自由振動第二模態………………………… 94 圖6-10 矩型樑探針之自由振動第三模態……………………… 95 圖6-11 矩型樑探針之長度變化與機械性質關係……………… 95 圖6-12 矩型樑探針之自由振動第三模態-扭轉………………… 96 圖6-13 矩型樑探針之厚度變化與機械性質關係……………… 96 圖6-14 矩型樑探針之自由振動第三模態-水平偏移…………… 97 圖6-15 矩型樑探針之寬度變化與機械性質關係……………… 97 圖6-16 LDV實驗量測之各組矩型樑探針之頻率響應…………… 98 圖6-17. V型樑探針內部長度變化與機械性質關係…………… 99 圖6-18. V型樑探針之自由振動第一模態……………………… 99 圖6-19. V型樑探針之自由振動第二模態-扭轉………………… 100 圖6-20. V型樑探針之自由振動第三模態……………………… 100 圖6-21. V型樑探針之厚度變化與機械性質關係……………… 101 圖6-22. V型樑探針之底部夾角變化與機械性質關係………… 101 圖6-23 導邊V型樑探針之內部長度變化與機械性質關係……… 102 圖6-24 導邊V型樑探針之自由振動第一模態…………………… 102 圖6-25 導邊V型樑探針之自由振動第二模態-扭轉…………… 103 圖6-26 導邊V型樑探針之自由振動第三模態…………………… 103 圖6-27 導邊V型樑探針之之厚度變化與機械性質關係………… 104 圖6-28 導邊V型樑探針之底部夾角變化與機械性質關係……… 104 圖6-29 導邊V型樑探針之底部導邊長度變化與機械性質關係… 105

    參考文獻
    1. G. Binnig, C. F. Quate,, and C. Gerber, “Atomic Force Microscope”, Physical Review Letters, vol. 56, pp. 930-933, 1986.
    2. Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope-force mapping and profiling on a sub 100-Å scale”, Journal of Applied Physics, vol. 61, pp. 4723-4729, 1987
    3. Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, “Fractured polymer/silica surface studied by tapping mode atomic force microscopy”, Surface Science Letters, vol. 290, pp. 688-692, 1993.
    4. Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by ``force microscopy'' with 1000 Å resolution”, Applied Physics Letters, vol. 50, pp. 1455-1457, 1987.
    5. A. Wadas, J. Moreland, P. Rice, and R. R. Katti, “Magnetic force microscopy images of magnetic garnet with thin-film magnetic tip”, Applied Physics Letters, vol. 64, pp. 1156-1158, 1994.
    6. P. R. Krauss and S. Y. Chou, “Fabrication of planar quantum magnetic disk structure using electron beam lithography, reactive ion etching, and chemical mechanical polishing”, Journal of Vacuum Science & Technology B, vol. 13, pp. 2850-2852, 1995.
    7. H. J. Mamin and D. Rugar, “Thermomechanical writing with an atomic force microscope tip”, Applied Physics Letters, vol. 61, pp. 1003-1005, 1992.
    8. H. J. Mamin, L. S. Fan, S. Hoen, D. Rugar, “Tip-based data storage using micromechanical cantilevers”, Sensors and Actuators A, vol. 48, pp. 215-219, 1995.
    9. M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays”, Applied Physics Letters, vol. 77, pp. 3293-3295, 2000.
    10. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air”, Applied Physics Letters, vol. 56, pp. 2001-2003, 1990.
    11. A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, and J. Alexander, “Nanometer-scale lithography using the atomic force microscope”, Applied Physics Letters, vol. 61, pp. 2293-2295, 1992.
    12. E. S. Snow and P. M. Campbell, “Fabrication of Si nanostructures with an atomic force microscope”, Applied Physics Letters, vol. 64, pp. 1932-1934, 1994.
    13. F. S.-S. Chien, C.-L. Wu, Y.-C. Chou, T. T. Chen, S. Gwo, and W.-F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching”, Applied Physics Letters, vol. 75, pp. 2429-2431, 1999.
    14. M. Zhang, D. Bullen1, S. W. Chung, S. Hong, K. S. Ryu, Z. Fan, C. A. Mirkin, and C. Liu, “A MEMS nanoplotter with high-density parallel dip-pen nanolithography probe arrays”, Nanotechnology, vol. 13, pp. 212–217, 2002.
    15. G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy”, Applied Physics Letters, vol. 53, pp. 1045-1047, 1988.
    16. M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection”, Applied Physics Letters, vol. 62, pp. 834-836, 1993.
    17. T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for the atomic force microscope”, Journal of Vacuum Science & Technology A, vol. 8, pp. 3386-3396, 1990.
    18. A. Folch, M. S. Wrighton, and M. A. Schmidt, “Microfabrication of Oxidation-Sharpened Silicon Tips on Silicon Nitride Cantilevers for Atomic Force Microscopy”, JOURNAL OF MICROELECTRO- -MECHANICAL SYSTEMS, vol. 6, pp. 303-306, 1997.
    19. C. Liu and R. Gamble, “Mass producible monolithic silicon probes for scanning probe microscopes”, Sensors and Actuators A, vol. 71, pp. 233-237, 1998.
    20. J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, “A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy”, Review of Scientific Instruments, vol. 64, pp. 403-405, 1993.
    21. J. D. Holbery, V. L. Eden, M. Sarikaya, and R. M. Fisfer, “Experimental determination of scanning probe microscope cantilever spring constants utilizing a Nanoindentation apparatus”, Review of Scientific Instruments, vol. 71, pp. 3769-3776, 2000.
    22. S. K. Jericho, and M. H. Jericho, “Device for the determination of spring constants of atomic force microscope cantilevers and micromachined springs”, Review of Scientific Instruments, vol. 73, pp. 2483-2485, 2002.
    23. R. C. Hibbeler, “MECHANICS of MATERIALS”, 1997.
    24. J. E. Sader, I. Larson, P. Mulvaney, and Lee R. White, “Method for the calibration of atomic force microscope cantilevers”, Review of Scientific Instruments, vol. 66, pp. 3789-3798, 1995.
    25. K. E. Bisshopp, and D. C. Drucker, “Large deflection of cantilever beams”, Quarterly of Applied Math, vol. 3, pp. 272-275, 1945.
    26. J. H. Lau, “Large deflection of cantilever beam”, Journal of the Engineering Mechanics Division, ASCE, vol. 107, pp. 259-264, 1981.
    27. T. Belẻndez, C. Neipp, and A. Belẻndez, “Large and small deflections of a cantilever beam”, EUROPEAN JOURNAL OF PHYSICS, vol. 23, pp. 371-379, 2002.
    28. Rao, and S. Sigiresu, “Mechanical vibrations”, 1990.
    29. V. J. Morris, A. R. Kirby, and A. P. Gunning, “Atomic force microscopy for biologists”, 1999.
    30. K. S. Birdi, “Scanning probe microscopes :applications in science and technology”, 2003.
    31. Nano Technology Research Center of ITRI,http://www.ntrc.itri.org.tw/
    32. MEMS Clearinghouse, http://www.memsnet.org
    33.http://www.physics.leidenuniv.nl/sections/cm/ip/group/Principle_of_SPM.htm
    34. 化工科技與商情, http://www.chemnet.com.tw/
    35. 中國材料科學學會, http://140.114.18.41/
    36. TRIPLE-O Microscopy, Germany, http://www.triple-o.de
    37. M. Tortonese, “Cantilevers and Tips for Atomic Force Microscopy”, IEEE ENGINEERING IN MEDICINE AND BIOLOGY, PP. 28-33, 1997.
    38. C. H. Tsai, “Fabrication and actuation of an Integrated scanning probe array”, 奈米工程暨微系統技術研討會.
    39. 工研院電子所微系統組(ITRI/ERSO/MEMS).
    40. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface Studies by Scanning Tunneling Microscopy”, Physical Review Letters, vol. 49, pp. 57-61, 1982.
    41. D. M. Eigler and E. K. Schweizer, “Positioning single atoms with a scanning tunnelling microscope”, Nature, vol. 344, pp. 524-525, 1990.
    42. J. Y. Chen, C. T. Lin, W. C. Liao, H. C. Su, C. H. Tsai, K. N. Chiang, “A New Nano-Probe Using Micro Assembly Transfer”, First International Workshop on Nano & Bio-Electronics Packaging, Atlanta, USA, 22-23 March, 2004.
    43. C. Te Lin, W. C. Liao, J. Y. Chen, H. C. Su, C. H. Tsia, K. N. Chiang, “Design and Analysis of Nano-Probe of AFM Using Large Deflection Theory”, The 3rd Cross-Strait Workshop on Nano Science and Technology (CSWNST-3), Hualien, Taiwan, 27-29 April, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE