簡易檢索 / 詳目顯示

研究生: 萬曉明
Hisao-Ming Wan
論文名稱: 以米麴菌進行麴酸生產製程的開發
Process Development of Kojic Acid Production using Aspergillus oryzae
指導教授: 吳文騰
Wen-Teng Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 93
語文別: 中文
論文頁數: 135
中文關鍵詞: 麴酸米麴菌菌種改良發酵工程培養基篩選
外文關鍵詞: kojic acid, Aspergillus oryzae, strain improvement, medium design
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 麴酸是一種由絲狀真菌所代謝產生的有機酸,因為麴酸具有某些特殊的生物性質,所以常被的應用在許多用途上,例如其衍生物可當成止痛劑、殺蟲劑、食品添加劑。近年來,麴酸因具有抑制黑色素生成的能力,所以於美白保養品中被大量使用。有鑑於麴酸的廣泛使用性,如何大規模生產麴酸,以符合需求成為一個重要課題。本研究即是以大量生產麴酸為目標,選用米麴菌當作生產菌株,進行菌種改良、培養基設計與發酵生產等相關研究,希望能開發出一個優良的麴酸發酵程序。
    在菌種改良的研究上,利用結合原生質體化與誘變的方式,對原始菌株Aspergillus oryzae ATCC 22788 進行改造,以提高麴酸生產能力。經過三回的改良與篩選,高麴酸生產株M3B9被挑選出為後續研究麴酸生產的菌株。M3B9的麴酸生產能力為原始菌株的64倍。另外,兩這在細胞生長、碳源接受度與生長環境pH都有明顯不同,不過M3B9在經過多次繼代培養後,這些特異性會逐漸消失,轉變恢復為原始株。
    當獲得優良的生產株時之後,以營養源篩選和回應曲面法尋求合適的培養基。經由6種氮源和7碳源培養測試,在考量產率、發酵方便性、成本等因素後,選擇酵母菌萃取物與蔗糖做為氮、碳源之培養基。接續以回應曲面法討論合適的培養基濃度,當蔗糖濃度為100~130 g/L,酵母菌萃取物濃度為2~5 g/L時,米麴菌的麴酸生產量約可達50 g/L,為原始培養基的1.6倍。
    經過菌種改良和培養基的篩選之後,接下來以攪拌氏生物反應器培養,討論改良菌株M3B9麴酸大量生產的可行性。在批次培養研究中,利用三種不同的培養基當成營養源進行M3B9的麴酸發酵生產,在發酵槽中,其麴酸生產情形大致與搖瓶相同。但是在饋料批次實驗中,麴酸生產速度於發酵後期卻會大幅降低。而利用重複批次的培養,則在75 %體積的發酵液更換下,有最好的生產效率,麴酸生產速度類似於批次培養,大約為5 g/L-day。上述麴酸生產的結果,可應用於發酵規模放大之研究,及日後進行大規模的麴酸量產之參考。


    Kojic acid is a highly valuable compound, which is commonly produced by filamentous fungi and has wide applications in several fields due to its special biological functions. Because of its wide applications, there is an urgent need for the production of kojic acid on an industrial scale. This study concerns the development of fermentation process including strain improvement, medium design and fermentation operation for mass kojic acid production
    Strain improvement, combing induced mutation and protoplasting were applied to improve the wild type strain Aspergillus oryzae ATCC 22788 for high kojic acid production. From the three rounds of strain improvement, we obtained the best kojic acid hyper-production strain M3B9 that could produce kojic acid at level of 32 g/L in shake flask fermentation, which was 64-fold higher than productivity by the wild strain. Besides, wild type and improved strain showed significant differences in terms of byproducts, cell growth, and uptake of carbohydrates. However, gradual decay of specificity indicated that phenotype of M3B9 was not stabile when serially subcultured.
    After strain improvement, culture medium screening and optimization was carried out for promoting high kojic acid production. Sucrose and yeast extract were found to be the better candidates for use as carbon and nitrogen sources in the medium for high kojic acid productivity, cell morphology and cost. Through the use of response surface methodology (RSM), the optimal sucrose (100~130 g/L) and yeast extract (2~5 g/L) were identified and used in culture medium.
    The study also focused on the feasibility of large scale kojic acid production by using bioreactor. Similar productivity was shown in stirred tank fermentor as well in shake flask. Batch culture demonstrated that M3B9 has the potential for large scale kojic acid production. In order to improve the efficiency of kojic acid fermentation, fed-batch and repeated-batch cultures were performed. Despite accumulation of high concentration of kojic acid at the end of fed-batch culture, productivity decreased markedly during late fermentation period. Repeated-batch culture with 75 % medium replacement revealed the better productivity similar to batch culture. These results suggested that strain improvement, optimal medium design and suitable fermentation strategies can enhance the kojic acid production and can successfully applied for its industrial scale production .

    目錄 第 1 章 緒論 1.1 前言 1 1.2 研究目標與論文架構 4 第 2 章 米麴菌的菌種改良 2.1 背景簡介 8 2.1.1 菌種改良 8 2.1.2 麴菌 17 2.1.3 麴酸 21 2.2 材料、器材與實驗方法 26 2.2.1 菌株 26 2.2.2 藥品與器材 26 2.2.3 實驗方法 29 2.3 結果與討論 33 2.3.1 麴酸的檢測 33 2.3.2 A. oryzae生產麴酸之菌種改良 37 2.3.3麴酸高產株M3B9之特性探討 44 2.4 結論 52 第3章 培養基設計 3.1 背景簡介 54 3.1.1 培養基對代謝調控的影響 55 3.1.2 實驗設計法於培養基最適化之應用 59 3.1.3 培養基對麴酸生產的影響 65 3.2 材料與實驗方法 69 2.2.1 菌株 69 2.2.2 藥品與器材 69 3.2.3培養基之組成 69 3.2.4米麴菌培養方法 70 3.3 實驗結果與討論 70 3.3.1 氮源對米麴菌生長與麴酸產量的影響 70 3.3.2 碳源對米麴菌生產麴酸的影響 74 3.3.3 回應曲面法進行培養基之最適化 82 3.4 結論 93 第4章 麴酸之發酵生產 4.1 背景簡介 95 4.1.1 攪拌式生物反應器槽發酵生產麴酸 95 4.1.2氣泡塔式生物反應器醱酵生產麴酸 96 4.1.3 其他相關之麴酸發酵研究 97 4.2 材料與實驗方法 98 4.2.1 菌株 98 4.2.2 藥品與器材 99 4.2.3 米麴菌發酵生產麴酸 99 4.3 結果與討論 103 4.3.1 發酵槽攪拌速度的影響 103 4.3.2 不同培養基之批次發酵培養 103 4.3.3 饋料批次發酵培養 104 4.3.4 重複批次發酵培養 112 4.4 結論 118 第5章 結論與未來展望 5.1 總結 119 5.2未來展望 122 參考文獻 123

    參考文獻
    Ahuja, S.K., Ferreira, G.M., Moreira, A.R. 2004. Application of Plackett-Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium. Biotechnology and Bioengineering 85:666-675.

    Angell. S., Schwartz, E., Bibb, M.J. 1992. The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Molecular Microbiology 6:2833-2844.

    Ariff, A.B., Rosfarizan, M., Herng, L.S., Madihah, S.,Karim, M.I.A. 1997. Kinetics and modeling of kojic acid production by Aspergillus flavus link in batch fermentation and resuspended mycelial system. World Journal of Microbiology and Biotechnology 13:195-201.

    Ariff AB, Salleh MS, Ghani B, Hassan MA, Rusul G, Karim MIA. 1996. Aeration and yeast extract requirements for kojic acid production by Aspergillus flavus Link. Enzyme and Microbial Technology 19:545-550

    Arnstein, H.R.V., Bentley, R. 1953. The biosynthesis of kojic aced, (1)Production from 1 14C and 3:4 14C2 glucose and 2 14C 1:3 dihydroxy- acetone. Biochemical Journal 54:493-508.

    Bailey, J.E. 1998. Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnology Progress 14:8-20.

    Bajpai, P., Agrawal, P.K., Vishwanathan, L. 1981. Enzymes relevant to kojic acid biosynthesis in Aspergillus flavus. Journal of General Microbiology 127: 131-136.

    Bajpai, P., Agrawal, P.K., Vishwanathan, L. 1982. Production of kojic acid by resuspended mycelia of Aspergillus flavus. Canadian Journal of Microbiology 28:1340-1346.

    Bajpai, P., Agrawal, P.K., Vishwanathan, L. 1982b. Synthesis and properties. Journal of Scientific and Industrial Research 41: 185-194.

    Balaz, S., Uher, M., Brtko, J., Veverka, M., Bransova, J., Dobias, J., Podova, M., Buchvald, J. 1993. Relationship between antifungal activity and hydrophobicity of kojic acid-derivatives. Folia Microbiologica 38:387-391.

    Baltz, R.H. 1986. Mutagenesis in Streptomyces spp. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology: 184-190. American Society for Microbiology. Washington DC.

    Barbesgaard, P., Heldt-Hansen, H.P., Diderichsen, B. 1992. On the safety of Aspergillus oryzae. Applied Microbiology and Biotechnology 36:569-72.

    Barham, H.N., Smits, B.L. 1936. Production of kojic acid from xylose by Aspergillus flavus. Industrial and engineering chemistry 28:567.

    Barker, S.A., Shirley, J.A. 1980. Glucose oxidase, glucose dehydrogenase, glucose isomerase, beta-galactosidase and invertase. In: Rose AH,editor. Microbial enzymes and bioconversions:173-226. New York: Academic Press.

    Beelik, A. 1956. Kojic acid. Advances in Carbohydrate Chemistry and Biochemistry 11:145-183

    Bentley, R. 1957. Preparation and analysis of kojic acid. Methods in Enzymology 3:238-241

    Betina, V. 1995. Differentiation and secondary metabolism in some prokaryotes and fungi. Folia Microbiologica 40: 51-67
    Briganti, S., Camera, E., Picardo, M. 2003. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Research 16:101-110.
    Brauer, H. 1985. Stirred Vessel Reactors. Biotechnology, V.2, Chap. 19 395-444, Weinheim, New York.

    Braun, S., Vecht-Lifshitz, S.E. 1991. Mycelial morphology and metabolite production. Trends in Biotechnology 9:63-68.

    Bodie, E.A., Bower, B., Berka, R.M., Dunn-Coleman, N.S. 1994. Economically important organic acid and enzyme products. In:Martinelli SD, Kinghorn JR (eds) Aspergillus:50 years on. Elsevier. Amsterdam :561-596.

    Box, G.E.P., Wilson, K.B. 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society B 13:1-45.

    Burdock, F.A., Soni, M.G., Carabin, I.G. 2001. Evaluation of health aspects of kojic acid in food. Regulatory Toxicology and Pharmacology 33(1): 80-101.

    Could, B.S. 1938. The metabolism of Aspergillus tamari Kita. Kojic acid production. Biochemical Journal 65:243.

    Crueger, W., Crueger, A. 1984. Biotechnology: A Textbook of Industrial Microbiology. WI. Science Tech Inc, Madison.
    Du, L.X., Jia, S.J., Lu, F.P. 2002. Morphological changes of Rhizopus chinesis 12 in submerged culture and its relationship with antibiotic production. Process Biochemistry 38:1643-6.

    Farmer, W.R., Liao, J.C. 2000. Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotechnology 18:533-537.

    Flores, M.E., Ponce, E., Rubio, M., Huitron, C. 1993. Glucose and glycerol repression of amylase in Streptomyces kanamyceticus and isolation of deregulated mutants. Biotechnology Letter 15:595-600.

    Fujimoto, N., Watanabe, H., Nakatami, T., Roy, G. 1998. Induction of thyroid tumours in (C57BL/6N×C3H/N)F1 mice by oral administration of kojic acid. Food and Chemical Toxicology 36:697–703.

    Futamura, T., Okabe, M., Tamura, T., Toda, K., Matsunobu, T., Park, Y.S. 2001. Improvement of production of kojic acid by a mutant strain Aspergillus oryzae, MK107-39. Journal of Bioscience and Bioengineering 91(3): 272-276

    Futamura, T., Ishihara, H., Tamura, T., Yasutake, T., Huang, G.W., Kojima, M., Okabe, M. 2001b. Kojic acid production in an airlift bioreactor using partially hydrolyzed raw corn starch. Journal of Bioscience and Bioengineering 92:360-365.

    Ghosh, A., Chatterjee, B., Das, A. 1991. Production of glucoamylase by 2-deoxy-d-glucose resistant mutant of Aspergillus terreus. Biotechnology Letter 13:515-520.

    Gonzalez, R., Islas, L., Obregon, A.M., Escalante, L., Sanchez, S. 1995. Gentamicin formation in Micromonospora purpurea: stimulatory effect of ammonium. Journal of Antibiotics 48:715-719.

    Hajjaj, H., Niederberger, P., Duboc, P. 2001. Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Applied and Environmental Microbiology 67:2596-602.

    Hopwood, D.A., Merrick, M.J. 1977. Genetics of antibiotic production.
    Bacteriological Reviews 41:595-635.

    Heerikhuisen, M. 2001. World Patent Application WO 01/09352

    Hoh, Y.K., Tan, T.K., Yeoh, H.H. 1992. Protoplast fusion of beta-glucosidase- producing Aspergillus niger strains. Applied Biochemistry and Biotechnology 37: 81-88.

    Homolka, L., Volakova, I., Nerud, F. 1995. Variability of enzymatic-activities in ligninolytic fungi Pleurotus ostreatus and Lentinus tigrinus after protoplasting and UV-mutagenization. Biotechnology Techniques 9:157-162.

    Jekosch, K., Kück, U. 2000. Loss of glucose repression in an Acremonium chrysogenum beta-lactam producer strain and its restoration by multiple copies of the cre1 gene. Applied Microbiology and Biotechnology 54:556-63.

    Kallio, P.T., Bailey, J.E. 1996. Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of alpha-amylase and neutral protease in Bacillus subtilis. Biotechnology Progress 12:31-39.

    Katagiri, H., Kitahara, K. 1929. The formation of kojic acid by Aspergillus oryzae. Bulletin of the Agricultural Chemical Society of Japan 5:38.

    Kawate, S., Koike, M., Fukuo, T., Hashiba, Y., Ichikawa, T. 1969. Kojic acid fermentationⅡ.Nitrogen sources of kojic acid fermentation medium. Kogyo Kagaku Zasshi 72:513.

    Kawate, S., Fukuo, T., Tsujimoto, K. 1975. On nutritious components for kojic acid fermentation medium (Ⅱ). Hakko Kyokaishi 33:341.

    Kennedy, M., Krouse, D. 1999. Strategies for improving fermentation medium performance: a review. Journal of Industrial Microbiology and Biotechnology 23: 456-475

    Kharchenko, S.N., Yatsyshin, A.I., Magdenko, L.Y. 1986. Koetoxicosis kojic acid poisoning in poultry. Veterinariya (Moscow). 9:70–73.

    Khosla, C., Bailey, J.E. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli.
    Nature 331:633-635.

    Kitada, M., Kanaeda, J., Miyazaki, K., Fukimbara, T. 1971. Production and recovery of kojic acid on an industrial scale. Journal of Fermentation Technology 49:343-349.

    Kitada, M., Ueyama, H., Suzuki, E., Fukimbara, T. 1967. Studies on kojic acid fermentation. (I) Culture condition in submerged culture. Journal of Fermentation Technology 45: 1101-1107.

    Kikuchi, M., Nakao, Y. 1986. Glutamic acid. In: Aida K, Chibata I, Nakayama K, Takinami K, Yamada H. (eds) Biotechnology of amino acid production. Elsevier. Amsterdam-Oxford-New York-Tokyo 101-120.

    Kirimura, K., Saragbin, S., Rugsaseel, S., Usami, S. 1992. Citric acid production by 2-deoxyglucose-resistant mutant strains of Aspergillus niger. Applied Microbiology and Biotechnology 36:573-577.

    Kitamoto, K. 2002. Molecular biology of the Koji molds. Advances in Applied Microbiology 51:129-153.

    Kwak, M.Y., Rhee, J.S. 1992. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production. Biotechnology and Bioengineering 39: 903-906.

    Li, C., Bai, J.H., Cai, Z.L., Fan, O.Y. 2002. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. Journal of Biotechnology 93:27-34.

    Machida, M. 2002. Progress of Aspergillus oryzae genomics. Advances in Applied Microbiology 51:81-106.

    Marwaha, S.S., Kaur, J., Sodhi, G.S. 1994. Organomercury(Ii) Complexes of Kojic Acid and Maltol - Synthesis, Characterization, and Biological Studies. Journal of Inorganic Biochemistry 54:67-74.

    Manfredini, R., Cavallera, V., Marini, L., Donati, G. 1983. Mixing and oxygen- transfer in conventional stirred fermenters. Biotechnology and Bioengineering 25: 3115-3131.

    Martinelli, S.D. 1994. Aspergillus nidulans as an experimental organism. In:Martinelli SD, Kinghorn JR (eds) Aspergillus:50 years on. Elsevier. Amsterdam:369-380.

    May, O.E., Moyer, A.J., Wells, P.A., Herrick, H.T. 1931. The production of kojic acid by Aspergillus flavus. Journal of the American Chemical Society 53:774-782.

    Mercenier, A., Chassy, B.M. 1988. Strategies for the development of bacterial transformation systems. Biochimie 70:503-517.

    Merrick, M.J., Edwards, R.A. 1995. Nitrogen control in bacteria. Microbiological Reviews 59:604-622.

    Mitsumori, K., Onodera, H., Takahashi, M., Funakoshi, T., Tamura, T., Yasuhara, K., Takegawa, K., Takahashi, M. 1999. Promoting effects of kojic acid due to serum TSH elevation resulting from reduced serum thyroid levels on development of thyroid proliferative lesions in rats initiated with N-bis(2-hydroxypropyl)- nitrosamine. Carcinogenesis 20:173-176.

    Mohamad, R., Ariff, A., Ali Hassan, M., Karim, M.I.A., Shimizu, H., Shioya, S. 2002. Importance of carbon source feeding and pH control strategies for maximum kojic acid production from sago starch by Aspergillus flavus. Journal of Bioscience and Bioengineering 94:99-105.

    Nielsen, J. 2001. Metabolic engineering. Applied Microbiology and Biotechnology. Current Opinion in Microbiology 55:263-83.

    Norton, S., Vuillemard, J.C. 1994. Food bioconversions and metabolite production using immobilized cell technology. Critical reviews in biotechnology 14: 193-224.

    Novotny, L., Rauko, P., Abdel-Hamid, M., Vachalkova, A. 1999. Kojic acid - a new leading molecule for a preparation of compounds with an anti-neoplastic potential. Neoplasma 46: 89-92.

    Pan, F.L., Coote, J.G. 1979. Glutamine synthetase and glutamate synthase activities during growth and sporulation of Bacillus subtilis. The Journal of General Microbiology 112:373-377.

    Park, Y.S., Dohijima, T., Okabe, M. 1995. Enhanced alpha-amylase production in recombinant Bacillus brevis by fed-batch culture with amino acid control. Biotechnology and Bioengineering 49:36-44.

    Parekh, S., Vinci V.A., Strobel, R.J. 2000. Improvement of microbial strains and fermentation processes. Applied Microbiology and Biotechnology 54: 287-301.

    Parrado, J., Millan, F., Hernandez-Pinzon, I., Bautista, J., Machado, A. 1993. Sunflower peptones: use as nitrogen source for the formulation of fermentation media. Process Biochemistry 28:109-113.

    Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, del Cardayre S. 2002. Genome shuffling of Lactobacillus for improved acid tolerance. Nature Biotechnology 20:707-712.

    Peberdy, J.F. 1979. Fungal protoplasts: isolation, reversion, and fusion. Annual Review of Microbiology 33:21-39.

    Pedersen, A.G., Bundgaard-Nielsen, M., Nielsen, J., Villadsen, J., Hassager, O. 1993. Rheological Characterization of Media Containing Penicillium chrysogenum, Biotechnology and Bioengineering 41:162-164.

    Pontecorvo, G., Roper, J.A., Hemmons, L.M., Macdonald, K.D., Bufton, A.W.J..1953.(A) The genetics of Aspergillus nidulans. Advance in Genetics 5:141-238.

    Pontecorvo, G., Roper, J.A., Forbes, E. 1953.(B) Genetic recombination without sexual reproduction in Aspergillus niger. Journal of General Microbiology 8:198-210.
    Pontecorvo, G., Sermonti, G. 1954. Parasexual recombination in Penicillium chrysogenum. The Journal of General Microbiology 11:94-104.
    Pontecorvo, G. 1956. The parasexual cycle in fungi. Annual Review of Microbiology 10:393-400.
    Punt, P.J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., van den Hondel, C. 2002. Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology. 20:200-206.

    Rao, J.L.U.M., Satyanarayana, T. 2003. Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent alpha-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. Journal of Applied Microbiology 95:712-718.

    Rohlin, L., Oh, M.K., Liao, J.C. 2001. Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design. Current Opinion in Microbiology 4:330-335.

    Rosfarizan, M., Ariff, A.B. 2000. Kinetics of kojic aced fermentation by using different types and concentrations of carbon and nitrogen source. Journal of Industrial Microbiology and Biotechnology 25:20-24.

    Rosfarizan, M., Ariff, A.B., Hassan, M.A., Karim, M.I. 1998. Kojic acid production by Aspergillus flavus using gelatinized and hydrolyzed sago starch as carbon sources. Folia Microbiologica 43:459-464.

    Saier, Jr. M.H. 1998. Multiple mechanisms controlling carbon metabolism in bacteria. Biotechnology and Bioengineering 58:170-174.

    Saito, A., Fugii, T., Yoneyama, T., Miyashita, K. 1998. The glkA is involved in glucose repression of chitinase production in Streptomyces lividans. Journal of Bacteriology 180:2911-2914.

    Sanchez, S., Demain, A.L. 2002. Metabolic regulation of fermentation processes. Enzyme and Microbial Technology 31: 895-906.

    Schűgerl, K., Gerlach, S.R., Siedenberg, D. 1998. Influence of process parameters on the morphology and enzyme production of Aspergilli. Advances in Biochemical Engineering Biotechnology 60:195-266.

    Shene, C., Bravo, S. 2001. Zymomonas mobilis CP4 fed-batch fermentations of glucose-fructose mixtures to ethanol and sorbitol. Applied Microbiology and Biotechnology 57:323-328.

    Shibuya, T., Murota, T., Sakamoto, K., Iwahara, S., Ikeno, M. 1982. Mutagenicity and dominant lethal test of kojic acid, Ames test, forward mutation in cultured Chinese hamster cells and dominant lethal test in mice. The Journal of Toxicological Sciences 7:255-262.

    Stafford, D.E., Stephanopoulos, G. 2001. Metabolic engineering as an integrating platform for strain development. Current Opinion in Microbiology. 4:336-340.

    Stephanopoulos, G., Gill, R.T. 2001. After a decade of progress, an expanded role for metabolic engineering. Advances in Biochemical Engineering/ Biotechnology 73:1-8.

    Stülke, J., Hillen, W. 2000. Regulation of carbon catabolism in Bacillus species. Annul Review of Microbiology 54:849-80.

    Tamura, T., Mitsumori, K., Onodera, H., Fujimoto, N., Yasuhara, K., Takegawa, K., Takahashi, M. 1999. Inhibition of thyroid iodine uptake and organification in rats treated with kojic acid. Toxicological Sciences 47:170–175.

    Tang, L., Shah, S., Chung, L., Carney, J., Katz, L., Khosla, C., Julien, B. 2000. Cloning and heterologous expression of the epothilone gene cluster. Science. 287:640-642.

    Trenin, A.S., Fedorova, G.B., Laiko, A.V., Dudnik, I. 2001. Increase in eremomycin production by regeneration and UV-irradiation of Amycolatopsis orientalis subsp. eremomycini protoplasts. Antibiot Khimioter 46:6-11.

    Ushijima, W.S., Nakadai, T., Uchida, K. 1990. Breeding of new koji-molds through interspecific hybridization between Aspergillus oryzae and Aspergillus sojae by protoplast fusion. Agricultural and Biological Chemistry 54:1667-1676.

    Wahler, D., Reymond, J.L. 2001. Novel methods for biocatalyst screening. Current Opinion in Chemical Biology 5:152-158.

    Wakisaka, Y., Segawa, T., Imamura, K., Sakiyama, T., Nakanishi, K. 1998. Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using Aspergillus oryzae NRRL484. Journal of Fermentation and Bioengineering 85:488-494.

    Wei, C.I., Huang, T.S., Fernando, S.Y.,Chung, K.T. 1991. Mutagenicity studies of kojic acid. Toxicology Letters 59:213-220.

    Werch, S.C., Oester, Y.T., Friedemann, T.E. 1957. Kojic acid—A convulsant. Science 126: 450-451.

    Willke, T., Vorlop, K.D. 2001. Biotechnological production of itaconic acid. Applied Microbiology and Biotechnology 56:289-295.

    Yokoyama, T., Fujikata, M., Fujiie, A. 1993. Improvement of infectivity of Metarhizium anisopliae (Metschnikoff) to Anomala cuprea Hope (Coleoptera, Scarabaeidae) by ultraviolet-irradiation of protoplasts. Applied Entomology and Zoology 28:451-461.

    Yokotsuda, T. 1985. Traditional fermented soybean foods. In:Young M(ed) Comprehensive biotechnology-the principles, applications and regulation of biotechnology in industry: 395-423. Pergamon press. London.

    謝順景, 謝日鑫. 1981. 誘變育種學. 國立編譯館. 台中

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE