研究生: |
吳寧育 Ning-Yu Wu |
---|---|
論文名稱: |
藉由非化學鍵結自組裝量子點於奈米碳管之顯像研究 Visualization of Carbon Nanotubes by Self-assembled Quantum Dots via Noncovalent π-stacking |
指導教授: |
游萃蓉
Tri-Rung Yew |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 量子點 、奈米碳管 、雙官能基分子 |
外文關鍵詞: | Quantum Dots, Carbon nanotubes, Bifunctional group molecule |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究乃利用量子點(quantum dots, QDs)獨特的發光特性,將其附著於奈米碳管(carbon nanotubes)表面,實現使用螢光顯微鏡觀察奈米碳管之目的。為達此一目的,本研究合成一具有mercapto group與pyrenyl group之雙官能基分子(bifunctional molecule),分子結構中之mercapto group可與殼層為ZnS核心為CdSe之量子點(CdSe/ZnS QDs)表層Zn原子產生鍵結,使CdSe/ZnS QDs具有pyrenyl group,pyrenyl group與奈米碳管管壁具有π-stacking非化學鍵結靜電力吸附。因此以雙官能基分子進行改質後之CdSe/ZnS QDs表面即具有pyrenyl group,因π-stacking現象存在而使CdSe/ZnS QDs可自組裝於奈米碳管管壁,利用CdSe/ZnS QDs受激發時放射之可見光,達到利用光學顯微鏡觀察奈米碳管之目的。本研究同時利用穿透式電子顯微鏡確認自我組裝於奈米碳管表面。
This work is to present a simple visualization technique for carbon nanotubes (CNTs) observation in fluorescent optical microscope. A noncovalent coupling approach is proposed to conjugate fluorescent ZnS-capped CdSe quantum dots (QDs) to unmodified single-walled/multi-walled CNTs (SWCNTs/MWCNTs) via a bifunctional molecule, 1-(1-pyrenyl)-1-methanethiol, which contains mercapto and pyrenyl group. The pyrenyl group can interact strongly with the sidewall of CNT via noncovalent π-stacking, and the mercapto group was bound to the Zn atoms of ZnS-capped CdSe QDs, forming QDs-CNT complex. The fluorescent QDs-CNT complex makes it possible to observe CNTs directly by using fluorescent optical microscope. The success of QDs self-assembly to CNT’s sidewall were further verified by transmission electron microscope (TEM)
1. S. Iijima, Nature 1991, 354, 56
2. J. M. Haremza, M. A. Hahn, T. D. Krauss, Nano Lett. 2002, 2, 1253
3. S. Ravindran, S. Chaudhary, B. Colburn, M. Ozkan, C.S. Ozkan, Nano Lett. 2003, 3, 447
4.S. Chaudhary, J.H. Kim, K.V. Singh, M. Ozkan, Nano Lett. 2004, 4, 2415
5. N. Nakashima, Y. Tomonari, H. Murakami, Chem. Lett. 2002, 638
6. R.J. Chen, Y.G. Zhang, D.W. Wang, H.G. Dai, J. Am. Chem. Soc. 2001, 123, 3838
7. W.C.W. Chan, S. Nie, Science 1998, 281, 2016
8. W., Zhu, N. Minami, S. Kazaoui, Y. Kim, J. Mater. Chem. 2003, 13, 2196
9. J.E. Riggs, Z. Guo, D.L. Carroll, Y.P. Sun, J. Am. Chem. 2000, 122, 5879
10. R.C. Haddon, Acc. Chem. Res. 1988, 21, 243
11. S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals 1998, Cambridge University Press, United States of America
12. MRS Bulletin, February 1998
13. G. Jaeckel, Z. Tech. Phys. 1926, 6, 301
14. A. Henglein, J. Phys. Chem. 1982, 86, 2291-2293
15. L.E. Brus, J. Chem. Phys. 1984, 80, 4403
16. H. Mattoussi, L.H. Radzilowski, B.O. Dabbousi, D.E Fogg, R.R. Schrock, E.L. Thomas, M.F. Rubner, M.G. Bawendi, J. Appl. Phys. 1999, 86, 4390
17. Y. Yang, S. Xue, S. Liu, J. Huang, J. Shen, Appl. Phys. Lett. 1996, 69, 377
18. D.L. KLein, P.L. McEuen, J.E. Bowen Katari, R. Roth, A.P. Alivisatos, Appl. Phys. Lett. 1996, 68, 2574
19. M.A. Kastner, Nature 1997, 389, 667
20. D.L. KLein, R. Roth, A.K.L. Lim, A.P. Alivisatos, P.L. McEuen, Nature 1997, 389, 699
21. H. Weller, Advanced Materials 1993, 5, 88
22. J. Fang, J. Wu, X. Lu, Y. Shen, Z. Lu, Chem. Phys. Lett. 1997, 270, 145
23. S. Kohtani, A. Kudo, T. Sakata, Chem. Phys. Lett. 1993, 206, 166
24. C. Nasr, P.V. Kamat, S. Hotchandani, J. Electroanal. Chem. 1997, 420, 201
25. D. Liu, P.V. Kamat, J. Phys. Chem. 1993, 97, 10769
26. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 1994, 370, 354
27. B.O. Dabbousi, M.G. Bawendi, O. Onitsuka, M.F. Rubnar, Appl. Phys. Lett. 1995, 66, 1316
28. A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez jr, P.G. Schultz, Nature 1996, 382, 609
29. J.R. Arthur, J. Appl. Phys. 1968, 39, 4032
30. A.Y. Cho, J. Vac. Sci. Technol. 1971, 8, S31
31. D. Heitmann, J P. Kotthaus, Physics Today 1993, june, 56
32. M.A. Kastner, Physics Today 1993, january, 24
33. U. Rothlisberger, W. Andreoni, M. Parinello, Phys. Rev. Lett. 1994, 72, 665
34. L. Spanhel, M. Haase, H. Weller, A. Henglein, J. Am. Chem. Soc. 987, 109, 5649
35. M.L. Steigerwald, A.P Alivisatos, J.M. Gibson, T.D. Harris, R. Kortan, A.J. Muller, A.M. Thayer, T.M. Duncan, D.C. Douglas, L.E. Brus, J. Am. Chem. Soc. 1988, 110, 30460
36. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivistatos, Nature 2000, 404, 59-61
37. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc 1993, 115, 8706
38. H. Matsumoto, T. Sakata, H. Mori, H. Yoneyama, J. Phys. Chem. B 1996, 100, 13781
39. A. van Dijken, A. Meijerink, D. Vanmaekelbergh, Chem. Phys. Lett. 1997, 269, 494
40. N.W. Ashcroft, N.D. Mermin, Solid State Physics 1976, Philadelphia
41. L.E. Brus, J. Phys. Chem. 1986, 90, 2555
42. H.M. Schmidt, H. Weller, Chem. Phys. Lett. 1986, 129, 615-618
43. A. Henglein, Topics in Current Chemistry 1988, 143, 115
44. C. Journet, W.K. Master, P. Bernier, A. Loiseau, M. L. D. I. Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Nature 1997, 388, 756
45. A. Thess, R. Lee, P. Nikdaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomaken, J.E. Fisher, R.E. Smalley, Science 1996, 273, 483
46. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 1998, 282, 1105
47. S. Fan, M.G. Chaplin, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dia, Science 1991, 283, 512
48. C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Appl. Phys. Lett. 2000, 77, 2767
49. M. Su, B. Zheng, J. Liu, Chem. Phys. Lett. 2000, 322, 321
50. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of fullerences & carbon Nanotubes. 2000, San Diego: Academic Press
51. D.H. Lien, W.K. Hsu, H.W. Zan, N.H. Tai, C.H. Tsai, Adv. Mater. 2006, 18, 98
52. F. Tournus, S. Latil, M.I. Heggie, J.C. Charlier, Phy. Rev. B. 2005, 72, 75431