研究生: |
謝合彥 Hsieh, Ho-Yen |
---|---|
論文名稱: |
應用反應式離子蝕刻和奈米球微影形成規則的奈米結構 Fabrication of Nanostructure Array by Reactive Ion Etching and Nanosphere Lithography |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 奈米球微影 、氧化鋅 、奈米多孔 、氮化鋁 |
外文關鍵詞: | nanosphere lithography, ZnO, nanoporous, AlN |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
High-density ordered triangular Si nanopillars with sharp tips and varied slopes were fabricated by reactive ion etching of ordered Ni nanodot arrays,patterned with nanosphere lithography, on silicon. The slope and aspect ratio of the nanopillars were controlled by the variation of the mixing ratio of CF4 and O2 in the etching gas. Excellent field emission properties are attributed to the well-controlled spacing between nanopillars so that the antenna effect is minimized. Sharp tips and flared base, which are advantageous for high field emission current and mechanical/thermal stability, respectively, can be tailor-made depending on the applications.
Large–area nanoporous ZnO arrays were prepared on the Si substrate. The diameters of pores are varied with the size of the nanospheres. The porous structure has a high surface-volume ratio, and it can contribute to a high sensitivity UV photosensor. TEM grid was used to be a mask to fabricate the Ti/Au interdigitated electrode. The resistance decreased when the wavelength of the incident light is in the UV region. The value of Imax/Idark is higher with the reduction of pore diameter. The maximum value is as high as 250. The use of nanoporous ZnO as photosensor is of low cost and has high sensitivity compared to the ZnO film.
Well aligned AlN nanotips are fabricated by reactive ion etching the c-plane AlN thin film on the sapphire with etching gases of Cl2 and BCl3. The etching parameters, such as etching time, pressure and RF power, affect the height and morphology of AlN nanotips. Well aligned and tall AlN nanotips with small apex are obtained by the RIE etching via an appropriated etching recipe. The field-emission properties of nanotips were measured. In addition, well aligned AlN nanocolunm with bundled nanotips array are produced by etching the patterned AlN thin film with SiO2 nanospheres (700nm).
Chapter 1
1. N. Taniguchi, “On the Basic Concept of ‘Nano-Technology,” at International Conference of Product Engineers. Tokyo, Japan: Japan Society of Precision Engineering. (1974)
2. R. P. Feynman, “There’s Plenty of Room at the Bottom,” at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959)
3. C. N. R. Rao, A. Muller, and A. K. Cheetham, “The Chemistry of Nanomaterials,” Wiley-VCH Verlag GmbH & Co. KGaA, Hong Kong (2004)
4. Jon A. McCleverty, and Thomas J. Meyer, “Comprehensive Coordination Chemistry II: from Biology to Nanotechnology,” Elsevier Pergamon, Boston (2004)
5. Richard R.H. Coombs, and Dennis W. Robinson, “Nanotechnology in Medicine and the Biosciences,” Gordon and Breach Publishers, (1996)
6. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-937 (1996)
7. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000)
8. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature 375, 767-769 (1995)
9. K. Likharev and T. Claeson, “Single Electronics,” Sci. Am. 266, 80-85 (1992)
10. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res. 32, 415-423 (1999)
11. M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, “Resonant Tunneling of Electrons via 20 nm Scale InAs Quantum Dot and Magnetotunneling Spectroscopy of its Electronic States,” Appl. Phys. Lett. 70, 105-107 (1996)
12. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science 286, 1550-1552 (1999)
13. C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic Transport in Y-Junction Carbon Nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000)
14. M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire Resonant Tunneling Diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002)
15. J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration,” Science 293, 2044-2049 (2001)
16. C. M. Lieber, “The Incredible Shrinking Circuit,” Sci. Am. 285, 58-65 (2001)
17. V. Balzani, A. Credi, and M. Venturi, “The Bottom-Up Approach to Molecular-Level Devices and Machines,” Chem. Eur. J. 8, 5524-5532 (2002)
18. R. W. Siegel, E. Hu and M. C. Roco, “Nanostructure Science and Technology: A Worldwide Study,” (Prepared under the guidance of the IWGN, NSTC, 1999)
19. D. L. Klein, R. Roth, A. K. L. Lim and A. P. Alivisatos, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal,” Nature 389, 699-701 (1997)
20. H. Park, A. K. L. Lim, A. P. Alivisatos, “Fabrication of Metallic Electrodes with Nanometer Separation by Electromigration,” Appl. Phys. Lett. 75, 301-303 (1999)
21. Cerrina, C. Marrian, “A Path to Nanolithography,” MRS Bull. December, 56-62 (1996)
22. J. M. Gibson, “Reading and Writing with Electron Beams,” Phys. Today, October, 50, 56-61 (1997)
23. S. H. Hong, J. Zhu, C. A. Mirkin, “Multiple Ink Nanolithography: Toward a Multiple-Pen Nano-Plotter,” Science 286, 523-525 (1999)
24. C. B. Murray, C. B. Kagan, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Ann. Rev. Mater. Sci. 30, 523-543 (2000)
25. E. W. Wang, P. E. Sheehan, and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277, 1971-1975 (1997)
26. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287, 1471-1473 (2000)
27. L. D. Hicks, and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Phys. Rev. B 47, 16631-16634 (1993)
28. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001)
29. Y. Wu, and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, 605-607 (2000)
30. Y. Wu, B. Messer, and P. Yang, “Superconducting MgB2 Nanowires,” Adv. Mater. 13, 1487-1489 (2001)
31. Y. Wu, and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc. 123, 3165-3166 (2001)
32. C. C. Chen, and C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater. 12, 738-741 (2000)
33. M. H. Huang, Y. Wu, H. Feick, W. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13, 113-116 (2001)
34. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, “Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of InAs Nanowhiskers,” Appl. Phys. Lett. 61, 2051-2053 (1992)
35. Y. Wu, R. Fan, and P. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano Lett. 2, 83-86 (2002)
36. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic Growth of -Ga2O3 Nanowires by Arc Discharge,” Adv. Mater. 12, 746-750 (2000)
37. A. M. Morales, and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998)
38. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science 270, 1791-1794 (1995)
39. J. M. Soon, and K. P. Lohz, “Electrochemical Double-Layer Capacitance of MoS2 Nanowall Films,” Electrochem. Solid-State Lett. 10, A250-A254 (2007)
40. C. Ye, Y. Bando, G. Shen, and D. Golberg, “Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets,” J. Phys. Chem. B 110, 15146-15151 (2006)
41. M. bale and R. E. Palmer, “Microfabrication of Silicon Tip Structure for Multiple Probe Scanning Tunneling Microscopy,” J. Vac. Sci. Technol. B 20, 364-369 (2002)
42. K. K. Vossough and R. W. Bower, “Electron Field Emission from Polycrystalline Silicom Tips,” J. Vac. Sci. Technol. B 18, 962-967 (2000)
43. M. Kanechika, N. Sugimoto and Y. Mitsushima, “Study on a Condition for Formation of High Density of Silicon Needles with High Aspect Ratio,” J. Vac. Sci. Technol. B 20, 1843-1846 (2002)
44. K. Seeger and R. E. Palmer, “Fabrication of Silicon Cones and Pillars Using Rough Metal Films as Plasma Etching Masks,” Appl. Phys. Lett. 74, 1627-1629 (1999)
45. Kuo, J. Y. Shiu, and Peilin Chen, “Size- and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays,” Chem. Mater. 15, 2917-2920 (2003)
46. C. W. Kuo, J. Y. Shiu, Peilin Chen and G. A. Somorjai, “Fabrication of Size-Tunable Large-Area Periodic Silicon Nanopillar Arrays with Sub-10-nm Resolution,” J. Phys. Chem. B 107, 9950-9953 (2003)
47. C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westerberg, “Physical Properties of Thin Film Field Emission Cathodes with Molybdenum Cones,” J. Appl. Phys. 47, 5248-5263 (1976)
48. J. E. Griffith, D. A. Grigg, M. J. Vasile, P. E. Russel and E. A. Fitzgerald, “Characterization of Scanning Probe Microscope Tips for Linewidth Measurement,” J. Vac. Sci. Technol. B 9, 3586-3589 (1991)
49. D. A. Grigg, P. E. Russell, J. E. Griffith, M. J. Vasile and E. A. Fitzgerald, “Envelope Reconstruction of Probe Microscope Images,” Ultramicroscopy 42-44,1616(1992)
50. L. Montelius and J. O. Tegenfeldt, “Direct Observation of the Tip Shape in Scanning Probe Microscopy,” Appl. Phys. Lett. 62, 2628-2630 (1993)
51. A. L. Bogdanov, D. Erts, B. Nilsson and H. Olin, “Fabrication of Arrays of Nanometer Size Test Structures for Scanning Probe Microscope Tips Characterization,” J. Vac. Sci. Technol. B 12, 3681-3684 (1994)
52. P. Niedermann, W. Hanni, N. Blanc, R. Christoph and J. Burger, “Chemical Vapor Deposition Diamond for Tips in Nanoprobe Experiments,” J. Vac. Sci. Technol. A 14, 1233-1236 (1996)
53. S. J. Wilson and M. C. Hutley, “The Optical Properties of Moth Eye Antireflection Surfaces,” Optica Acta 29, 993-1009 (1982)
54. W. H. Southwell, “Pyramid Array Surface Relief Structures Producing Antireflection Index Matching on Optical Surfaces,” J. Opt. Soc. Am. A 8, 549-553 (1991)
55. H. R. Philipp and E. A. Taft, “Optical Constants of Silicon in the Region of 1 to 10 eV,” Phys. Rev. 120, 37-38 (1960)
56. A. Gomber, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll and V. Wittwer, “Subwavelength Structured Antireflective Surfaces on Glass,” Thin solid Films 351, 73-78 (1999)
57. Y. Kanamori, H. Kikuta and K. Hane, “Broadband Antireflection Gratings for Glass Substrates Fabricate by Fast Atom Beam Etching,” Jap. J. Appl. Phys. 39, L735-L737 (2000)
58. H. Toyota, K. Takahara, M. Okano, T. Yotsuya and H. Kikuta, “Fabrication of Microcone Arrays for Antireflection Structured Surface Using Metal Dotted Pattern,” Jap, J. Appl. Phys. 40, L747-L749 (2001)
59. M. R. Rakhshandehroo and S. W. Pang, “Fabrication of Si Field Emitters by Dry Etching and Mask Erosion,” J. Vac. Sci. Technol. B 14, 612-616 (1996)
60. J. C. She, N. S. Xu, S. Z. Deng, J. Chen, H. Bishop, S. E. Huq, L. Wang, D. Y. Zhong and E. G. Wang, “Vacuum Breakdown of Carbon-Nanotube Field Emitters on A Silicon Tip,” Appl. Phys. Lett. 83, 2671-2673 (2003)
61. S. Akita, Y. Nakayamaa, S. Mizooka, Y.i Takano, T. Okawa, Y. Miyatake, S. Yamanaka, M. Tsuji and T. Nosaka, “Nanotweezers Consisting of Carbon Nanotubes Operating in An Atomic Force Microscope,” Appl. Phys. Lett. 79, 1691-1693 (2001)
62. J. C. She, N. S. Xu, S. E. Huq, S. Z. Deng and J. Chen, “Silicon Tip Arrays with Ultrathin Amorphous Diamond Apexes,” Appl. Phys. Lett. 81, 4257-4259 (2002)
63. D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek and S. Amon, “Different Aspect Ratio Pyramidal Tips Obtained by Wet Etching of (100) and (111) Silicon,” Microelectronics Journal 34, 591–593 (2003)
64. M. Kanechika, N. Sugimoto, and Y. Mitsushima, “Control of Shape of Silicon Needles Fabricated by Highly Selective Anisotropic Dry Etching,” J. Vac. Sci. Technol. B 20 1298-1302 (2002)
65. Z. L. Wang, and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science, 312, 242-246 (2006)
66. X. Wang, J. Song, J. Liu, Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science, 316, 102-105 (2007)
67. J. H. He, C. L. Hisn, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric Gated Diode of a Single ZnO Nanowire,” Adv. Mater. 19, 781-784 (2007)
68. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, 292, 1897-1899 (2001)
69. J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W. Kim, “Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet Laser,” Adv. Mater. 15, 1911-1914 (2003)
70. X. Wang, C. Neff, E. Graugnard, Y. Ding, J. S. King, L. A. Pranger, R. Tannenbaum, Z. L. Wang, and C. J. Summers, “Photonic Crystals Fabricated Using Patterned Nanorod Arrays,” Adv. Mater. 17, 2103-2106 (2005)
71. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors,” Appl. Phys. Lett. 84, 3654-3656 (2005)
72. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire Dye-Sensitized Solar Cells,” Nature Mater. 4, 455-459 (2005)
73. Z. L. Wang, “Zinc Oxide Nanostructures: Growth, Properties and Applications,” J. Phys.: Condens. Matter, 16, R829–R858 (2004)
74. X. Y. Kong, and Z. L. Wang, “Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts,” Nano Lett. 3, 1625-1631 (2003)
75. Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang, and Y. Zhang, “Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces,” Adv. Funct. Mater. 14, 943-956 (2004)
76. X. Y. Kong, Y. Ding, R. S. Yang, and Z. L. Wang, “Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts,” Science, 303, 1348-1351 (2004)
77. W. Hughes, and Z. L. Wang, “Formation of Piezoelectric Single-Crystal Nanorings and Nanobows,” J. Am. Chem. Soc. 126, 6703-6709 (2004)
78. P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of Zinc Oxide Nanobelts into Superlattice- Structured Nanohelices,” Science, 309, 1700-1704 (2005)
79. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris, “On-Chip Natural Assembly of Silicon Photonic Band Gap Crystals,” Nature 414, 289-293 (2001)
80. M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. S. Torres, “Photonic Crystal Films with High Refractive Index Contrast,” Adv. Mater. 12, 1499-1503 (2000)
81. A. Mihi, and H. Míguez, “Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. B 109, 15968-15972 (2005)
82. I. Rodriguez, P. Atienzar, F. Ramiro-Manzano, F. Meseguer, A. Corma, and H. Garcia, “Photonic Crystals for Applications in Photoelectrochemical Processes: Photoelectrochemical Solar Cells with Inverse Opal Topology,” Photon. Nanostruct. Fundam. Appl. 3, 148-154 (2003)
83. R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, G. A. Ozin, “Tin Dioxide Opals and Inverted Opals: Near-Ideal Microstructures for Gas Sensors,” Adv. Mater. 13, 1468-1472 (2001)
84. M. Acciarri, R. Barberini, C. Canevali, M. Mattoni, C. M. Mari, F. Morazzoni, L. Nodari, S. Polizzi, R. Ruffo, U. Russo, M. Sala, and R. Scotti, “Ruthenium (Platinum)-Doped Tin Dioxide Inverted Opals for Gas Sensors: Synthesis, Electron Paramagnetic Resonance, Mössbauer, and Electrical Investigation,” Chem. Mater. 17, 6167-6171 (2005)
85. H. Míguez, F. Meseguer, C. López, M. Holgado, G. Andreasen, A. Mifsud, and V. Fornés, “Germanium FCC Structure from a Colloidal Crystal Template,” Langmuir 16, 4405-4408 (2000)
86. H. Míguez, E. Chomski, F. García-Santamaría, M. Ibisate, S. John, C. López, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. vandriel, “Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition,” Adv. Mater. 13, 1634-1637 (2001)
87. L. K. van Vugt, A. F. van Driel, R. W. Tjerkstra, L. Bechger, W. L. Vos, D. Vanmaekelbergh, and J. J. Kelly, “Macroporous Germanium by Electrochemical Deposition,” Chem. Commun. 18, 2054-2055 (2002)
88. A. Imhof, and D. J. Pine, “Ordered Macroporous Materials by Emulsion Templating,” Nature 389, 948-951 (1997)
89. B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids,” Science 281, 538-540 (1998)
90. J. E. G. J. Wijnhoven, and W. L. Vos, “Preparation of Photonic Crystals Made of Air Spheres in Titania,” Science 281, 802-804 (1998)
91. P. V. Braun, and P. Wiltzius, “Microporous Materials: Electrochemically Grown Photonic Crystals,” Nature 402, 603-604 (1999)
92. P. Jiang, J. F. Bertone, and V. L. Colvin, “A Lost-Wax Approach to Monodisperse Colloids and Their Crystals,” Science 291, 453-457 (2001)
93. Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su, and C. C. Chen, “Fabrication of 3D Macroporous Structures of II-VI and III-V Semiconductors Using Electrochemical Deposition,” Langmuir 18, 9942-9946 (2002)
94. Y. A. Vlasov, N. Yao, and D. J. Norris, “Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots,” Adv. Mater. 11, 165-169 (1999)
95. L. Yang, Z. Yang, W. Cao, L. Chen, J. Xu, and H. Zhang, “Luminescence 3D-Ordered Porous Materials Composed of CdSe and CdTe Nanocrystals,” J. Phys. Chem. B 109, 11501-11504 (2005)
96. H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, and A. Stein, “General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion,” Chem. Mater. 12, 1134-1141 (2000)
97. T. Sumida, Y. Wada, T. Kitamura, and S. Yanagida, “Macroporous ZnO Films Electrochemically Prepared by Templating of Opal Films,” Chem. Lett. 30, 38-39 (2001)
98. S. M. Bradshaw, J. L. Spicer, “Combustion Synthesis of Aluminum Nitride Particles and Whiskers,” J. Am. Ceram. Soc., 82, 2293-2300 (1999)
99. M. C. Benjamin, C. Wang, R. F. Davis, R.J. Nemanich, “Observation of A Negative Electron-Affinity for Heteroepitaxial AlN on Alpha-SiC(0001),” Appl. Phys. Lett. 64, 3288-3290 (1994)
Chapter 2
1. M. P. Zach, K. H. Ng and R. M. Penner, “Molybdenum Nanowires by Electrodeposition,” Science 290, 2120-2123 (2000)
2. J. J. McClelland, R. E. Scholten, E. C. Palm and R. J. Celotta, “Laser-Focused Atomic Deposition,” Science 262, 877-880 (1993)
3. H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41, 377-379 (1982)
4. U. C. Fischer and H. P. Zingsheim, “Sub-microscopic Pattern Replication with Visible-Light,” J. Vac. Sci. Technol. 19, 881-885 (1981)
5. C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105, 5599-5611 (2001)
6. J. C. Hulteen and R. P. van Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surface,” J. Vac. Sci. Technol. 13, 1553-1558 (1995)
Chapter 3
1. T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross Section of Large Scale Integrated Circuits,” IEEE Trans. Electron Devices Ed-23, 531-536 (1975)
2. C. X. Xu and X. W. Sun, “Field Emission from Zinc Oxide Nanopins,” Appl. Phys. Lett. 83, 3806-3808 (2003)
3. Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Chang, “A Nanotube-Based Field-Emission Flat Panel Display,” Appl. Phys. Lett. 72, 2912-2914 (1998)
Chapter 4
1. U. Heiz, F. Vanolli, A. Sanchez, and W.-D. Schneider, “Size-Dependent Molecular Dissociation on Mass-Selected, Supported Metal Clusters,” J. Am. Chem. Soc. 120, 9668-9671 (1998)
2. D. G. Choi, S. Kim, S. G. Jang, S. M. Yang, J. R. Jeong, and S. C. Shin, “Nanopatterned Magnetic Metal via Colloidal Lithography with Reactive Ion Etching,” Chem. Mater. 16, 4208-4211 (2004)
3. M. Hehn, K. Ounadjela, J. P. Bucher, F. Rousseaux, D. Decanini, B. Bartenlian and C. Chappert, “Nanoscale Magnetic Domains in Mesoscopic Magnets,” Science 272, 1782-1785 (1996)
4. E. Ito, H. Oji, T. Araki, K. Oichi, H. Ishii, Y. Ouchi, T. Ohta, N. Kosugi, Y. Maruyama, T. Naito, T. Inabe, and K. Seki, “Soft X-ray Absorption and X-ray Photoelectron Spectroscopic Study of Tautomerism in Intramolecular Hydrogen Bonds of N-Salicylideneaniline Derivatives,” J. Am. Chem. Soc. 119, 6336-6344 (1997)
5. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney and R. G. Osifchin, “Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters,” Science 273, 1690-1693 (1996)
6. C. A. SPINDT, C. E. HOLLAND, I. BRODIE, J. B. MOONEY and E. R. WESTERBERG, “Field-Emitter Arrays Applied to Vacuum Fluorescent Display,” IEEE Transactions on Electron Dev. 36, 225-228 (1989)
7. L. W. Swanson and N. A. Martin, “Field Electron Cathode Stability Studies : Zirconium/Tungsten Thermal-Field Cathode,” J. Appl. Phys. 46, 2029- 2050 (1975)
8. D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, S. Amon, “Different Aspect Ratio Pyramidal Tips Obtained by Wet Etching of (100) and (111) Silicon,” Microelectronics Journal 34, 591–593 (2003)
9. M. R. Rakhshandehroo and S. W. Pang, “Fabrication of Si Field Emitters by Dry Etching and Mask Erosion,” J. Vac. Sci. Technol. B 14, 612-616 (1996)
10. M. Kanechika, N. Sugimoto, and Y. Mitsushima, “Control of Shape of Silicon Needles Fabricated by Highly Selective Anisotropic Dry Etching,” J. Vac. Sci. Technol. B 20, 1298-1302 (2002)
11. C. L. Haynes and R. P. V. Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105, 5599-5611 (2001)
12. X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang and C. J. Summers, “Large-Scale Fabrication of Ordered Nanobowl Arrays,” Nano Lett. 4, 2223-2226 (2004)
13. C. W. Kuo, J. Y. Shiu, Y. H. Cho and P. Chen, “Fabrication of Large-Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks,” Adv. Mater. 15 1065-1068 (2003)
14. A. J. Haes, and R. P. V. Duyne, “A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles,” J. AM. CHEM. SOC. 124, 10596-10604 (2002)
15. P. R. Krauss and S. Y. Chou, “Nano-Compact Disks with 400 Gbit/in2 Storage Density Fabricated Using Nanoimprint Lithography and Read with Proximal Probe,” Appl. Phys. Lett. 71, 3174-3176 (1997)
16. Vladimir V. Poborchii, Tetsuya Tadab) and Toshihiko Kanayama, “A Visible–near Infrared Range Photonic Crystal Made up of Si Nanopillars,” Appl. Phys. Lett., 75, 3276-3278 (1999)
17. K. Lee, and S. A. Asher, “Photonic Crystal Chemical Sensors: pH and Ionic Strength,” J. Am. Chem. Soc. 122, 9534-9537 (2000)
18. Christy L. Haynes, and Richard P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105, 5599-5611 (2001)
19. J. C. Hulteen, D. A. Treichel, M. T. Smith, M.e L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854-3863 (1999)
20. C. J. Mogab, A. C. Adams and D. L. Flamm, “Plasma Etching of Si and SiO2-The Effect of Oxygen Addition to CF4 Plasmas,” J. Appl. Phys. 49, 3796-3803 (1978)
21. R. d’Agostino, F. Cramarossa, S. D. Benedictis and G. Ferraro, “Spectroscopic diagnostics of CF4-O2 plasmas during Si and SiO2 Etching Processes,” J. Appl. Phys. 52, 1259-1265 (1981)
22. G. S. Oehrlein, S. W. Robey and J. L. Lindstrom, “Surface Processes in CF4/O2 Reactive Etching of Silicon,” Appl. Phys. Lett. 52, 1170-1172 (1988)
23. D. L. Flamm, “Mechanisms of Silicon Etching in Fluorine- abd Chlorine-Containing Plasmas,” Pure & Appl. Chem. 62, 1709-1720 (1990)
Chapter 5
1. C. L. Haynes and R. P. V. Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105, 5599-5611 (2001)
2. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. Summers, “Large-Scale Fabrication of Ordered Nanobowl Arrays,” Nano Letters 4, 2223-2226 (2004)
3. C. W. Kuo, J. Y. shiu, Y. H. Cho and P. Chen, “Fabrication of Lrge-Aea Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks,” Adv. Mater 15, 1065-1068 (2003)
4. M. R. Rakhshandehroo and S. W. Pang, “Fabrication of Si Field Emitters by Dry Etching and Mask Erosion,” J. Vac. Sci. Technol. B 14, 612-616 (1996)
5. M. Kanechika, N. Sugimoto, and Y. Mitsushima, “Control of Shape of Silicon Needles Fabricated by Highly Selective Anisotropic Dry Etching,” J. Vac. Sci. Technol. B 20 1298-1302 (2002)
6. D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek and S. Amon, “Different Aspect Ratio Pyramidal Tips Obtained by Wet Etching of (100) and (111) Ailicon,” Microelectronics Journal 34, 591–593 (2003)
7. J. C. She, N. S. Xu, S. Z. Deng, J. Chen, H. Bishop, S. E. Huq, L. Wang, D. Y. Zhong and E. G. Wang, “Vacuum Breakdown of Carbon-Nanotube Field Emitters on a Silicon Tip,” Appl. Phys. Lett. 83, 2671-2673 (2003)
8. S. Akita, Y. Nakayamaa, S. Mizooka, Y.i Takano, T. Okawa, Y. Miyatake, S. Yamanaka, M. Tsuji and T. Nosaka, “Nanotweezers Consisting of Carbon Nanotubes Operating in An Atomic Force Microscope,”Appl. Phys. Lett. 79, 1691-1693 (2001)
9. J. C. She, N. S. Xu, S. E. Huq, S. Z. Deng and J. Chen, “Silicon Tip Arrays with Ultrathin Amorphous Diamond Apexes,” Appl. Phys. Lett. 81, 4257-4259 (2002)
10. C. W. Kuo, J. Y. Shiu, and Peilin Chen, “Size- and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays,” Chem. Mater. 15, 2917-2920 (2003)
11. C. W. Kuo, J. Y. Shiu, Peilin Chen and G. A. Somorjai, “Fabrication of Size-Tunable Large-Area Periodic Silicon Nanopillar Arrays with Sub-10-nm Resolution,” J. Phys. Chem. B 107, 9950-9953 (2003)
12. C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma Etching of Si and SiO2-The Effect of Oxygen Additions to CF4 plasmas,” J. Appl. Phys. 49, 3796-3803 (1978)
13. R. d’Adgostino, F. Cramarossa, S. D. Benedictis and G. Ferraro, “Spectroscopic Diagnostics of CF4-O2 Plasma During Si and SiO2 Etching Processes,” J. Appl. Phys. 52, 1259-1265 (1981)
14. G. S. Oehrlein, S. W. Robey and J. L. Lindstrom, “Surface Processes in CF4/O2 Reactive Etching of Silicon,” Appl. Phys. Lett. 52, 1170-1172 (1988)
15. B. T. Lee, T. R. Hayes, P. M. Thomas, R. Pawelek and P. F. Sciortino, Jr., “SiO2 Mask Erosion and Sidewall Composition During CH4/H2 Reactive Ion Etching in InGaAsP/InP,” Appl. Phys. Lett. 63, 3170-3172 (1993)
16. N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello and S. T. Lee, “Fabrication and Field Emission of High-Density Silicon Cone Arrays,” Adv. Mater. 14, 1308-1311 (2002)
17. S. Chattopadhyay, L. C. Chen and K. H. Chen, “Nanotips: Growth, Model, and Applications,” Critical Reviews in Solid State and Materials Sciences 31, 15–53 (2006)
18. F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Leea, “Electron Field Emission from Silicon Nanowires,” Appl. Phys. Lett. 75, 1700-1702 (1999)
19. Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of Taperlike Si Nanowires with Strong Field Emission,” Appl. Phys. Lett. 86, 13112 (2005)
20. T. C. Cheng,a_ J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen Plasma Dry Etching Method for Field Emission Application,” Appl. Phys. Lett. 88, 263118 (2006)
21. C. T. Huang, C. L. Hsin, K. W. Huang, C. Y. Lee, P. H. Yeh, U. S. Chen, and L. J. Chen, “Er-doped Silicon Nanowires with 1.54μm Light-emitting and Enhanced Electrical and Field Emission Properties,” Appl. Phys. Lett. 91, 093133 (2007)
Chapter 6
1. C. X. Xu, X. W. Sun and B. J. Chen, “Field Emission from Gallium-doped Zinc Oxide Nanofiber Array,” Appl. Phys. Lett. 84, 1540-1542 (2004)
2. Dana C. Olson, Jorge Piris, Reuben T. Collins, Sean E. Shaheen, David S. Ginley, “Hybrid Photovoltaic Devices of Polymer and ZnO Nanofiber Composites,” Thin Solid Films 496, 26-29 (2006)
3. Zhong Lin Wang, “Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides-From Materials to Nanodevices,” Adv. Mater. 15, 432-436 (2003)
4. Sachiko I. Matsushita, Tetsuya Miwa, Donald A. Tryk, Akira Fujishima, “New Mesostructured Porous TiO2 Surface Prepared Using a Two-Dimensional Array-Based Template of Silica Particles,” Langmuir 14, 6441-6447 (1998)
5. F. Q. Sun, W. P. Cai, Y. Li, B. Q. Cao, Y. Lei and L. Zhang, “Morphology-controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays,” Adv. Funct. Mater. 14, 283-288 (2004)
6. Y. Li, W. Cai, G. Duan, F. Sun, B. Cao, F. Lu, Q. Fang, I.W. Boyd, “Large-area In2O3 Ordered Pore Arrays and Their Photoluminescence Properties,” Appl. Phys. A 81, 269-273 (2005)
7. C. C. Kei, K. H. Kuo, C. Y. T. Lee, C. N. Hsiao and T. P. Perng, “Metal Oxide Nano-Honeycombs Prepared by Solution-Based Nanosphere Lithography and the Field Emission Properties,” Chem. Mater. 18, 4544-4546 (2006)
8. P. M. Tessier, O. D. Velev, A. T. Kalambur, A. M. Lenhoff, J. F. Rabolt and E. W. Kaler, “Structured Metallic Films for Optical and Spectroscopic Applications via Colloidal Crystal Templating,” Adv. Mater. 13, 396-400 (2001)
9. M. Scharrer, X.Wu, A. Yamilov, H. Cao and R. P. H. Chang, “Fabrication of Inverted Opal ZnO Photonic Crystals by Atomic Layer Deposition,” Appl. Phys. Lett. 86, 151113 (2005)
10. B. H. Juarez, P. D. Garcia, D. Golmayo, A. Blanco and C. Lopez, “ZnO Inverse Opals by Chemical Vapor Deposition,” Adv. Mater. 17, 2761-2765 (2005)
11. X. Wu, A. Yamilov, X.Liu, S. Li V. P. Dravid, R. P. H. Chang and H. Cao, “Ultraviolet Photonic Crystal Laser,” Appl. Phys. Lett. 85 3657-3659 (2004)
12. H. Liu, X. Zhao, Y. Yang, Q. Li and J. Lv, “Fabrication of Infared Left-Handed Metamaterials via Double Template-Assisted Electrochemical Deposition,” Adv. Mater. 18, 1-5 (2008)
13. C. C. Kei, T. H. Chen, C. M. Chang, C.Y. Su, C. T. Lee, C.N. Hsiao, S. C. Chang and T. P. Perng, “Preparation of Periodic Arrays of Metallic Nanocrystals by Using Nanohoneycomb as Reaction Vessel,” Chem. Mater. 19, 5833-5835 (2007)
14. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P.A. Wolff, “Extraordinary Optical Transmission Through Sub-Wavelength Hole Arrays,” Nature 39, 667-669 (1998)
15. Y. Xia, J. A. Rogers, K.i E. Paul, and G. M. Whitesides, “Unconventional Methods for Fabricating and Patterning Nanostructures,” Chem. Rev. 99, 1823-1848 (1999)
16. P. Y. Su, J. C. Hu, S. L. Cheng, L. J. Chen and J. M. Liang, “Self-assembled Hexagonal Au Particle Networks on Silicon from Au Nanoparticle Solution,” Appl. Phys. Lett. 84, 3480-3482 (2004)
17. T. Tatsuma, A. Ikezawa,Y. Ohko, “Microstructure TiO2 Templates for the Preparation of Size-controlled Bryopsis Protoplasts as Cell Models,” Adv. Mater. 12. 643-646 (2000)
18. H. kind, H. Yan, B. Messer, M. Law and P.Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches,” Adv. Mater 14, 158-160 (2002)
19. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7, 1003-1009 (2007)
20. J. B. K. Law and J. T. L. Thong, “Simple Fabrication of a ZnO Nanowire Photodetector with a Fast Photoresponse Time,” Appl. Phys. Lett. 88, 133114 (2006)
21. K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung and S. Kim, “Photocurrent in ZnO Nanowires Grown from Au Electrodes,” Appl. Phys. Lett. 84, 4376-4378 (2004)
22. J. Reemts and A. Kittel, “Persistent Photoconductivity in Highly Porous ZnO Films,” J. Appl. Phys. 101, 013709 (2007)
23. Amanda J. Haes, Shengli Zou, George C. Schatz, and Richard P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004)
24. H. Yan, Y. Yang, Z. Fu, B. Yang, L. Xia, S. Fu and F. Li, “Fabrication of 2D and 3D Ordered Porous ZnO Films Using 3D Opal Templates by Electrodeposition,” Electrochemistry Communication 7, 1117-1121 (2005)
25. Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura and Y. Ohya, “Photoconductivity of Ultrathin Zinc Oxide Films,” Jpn. J. Appl. Phys 33, 6611 (1994)
26. P. Sharma, K. Sreenivas and K. V. Rao, “Analysis of Ultraviolet Photoconductivity in ZnO Films Prepared by Unbalance Magnetron Sputtering,” J.Appl. Phys. 93, 3963-3970 (2003)
Chapter 7
1. S. M. Bradshaw and J. L. Spicer, “Combustion Synthesis of Aluminum Nitride Particles and Whiskers,” J. Am. Ceram. Soc. 82, 2293-2300 (1999)
2. M. C. Benjamin, C. Wang, R. F. Davis, and R. J. Nemanich, “Observation of a Negative Electron-affinity for Heteroepitaxial AlN on Alpha(6h)-SiC(0001),” Appl. Phys. Lett. 64, 3288-3290 (1994)
3. C. Liu, Z. Hu, Q. Wu, X. Z. Wang, Y. Chen, H. Sang, J. M. Zhu, S. Z. Deng, and N. S. Xu, “Vapor-Solid Growth and Characterization of Aluminum Nitride Nanocones,” J. Am. Chem. Soc. 127, 1318-1322 (2005)
4. S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen, and L. C. Chen, “Growth of Single-Crystalline Wurtzite Aluminum Nitride Nanotips with A Self-Selective Apex Angle,” Adv. Func. Mater. 15, 781-786 (2005)
5. L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li, Y. B. Li, and D. Golberg, “Single-crystalline AIN Nanotubes with Carbon-Layer Coatings on The Outer and Inner Surfaces via a Multiwalled-Carbon-Nanotube-Template-Induced Route,” Adv. Mater. 17, 110-114 (2005)
6. M. C. Wang, M. S. Tsai, and N. C. Wu, “Effect of Heat Treatment on Phase Transformation of Aluminum Nitride Ultrafine Powder Prepared by Chemical Vapor Deposition,” J. Crystal Growth 210, 487-495 (2000)
7. J. R. Park, S. W. Rhee, and K. H. Lee, “Gas-Phase Synthesis of AlN Powders from AlCl3-NH3-N2,” J. Mater. Sci. 28, 57-64 (1993)
8. A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, “In Situ-Grown Carbon Nanotube Array with Excellent Field Emission Characteristics,” Appl. Phys. Lett. 76, 3813-3815 (2000)
9. J. H. He, R. Yang, Y. L. Chueh, L. J. Chou, L. J. Chen and Z. L. Wang, “Aligned AlN Nanorods with Multi-tipped Surface-Growth, Field-Emission, and Cathodoluminescence Properties,” Adv. Mater. 18, 650-654 (2006)
10. Z. W. Pan, H. L. Lai, F. C. K. Au, X. F. Duan, W. Y. Zhou, W. S. Shi, N.Wang, C. S. Lee, N. B. Wong, S. T. Lee, and S. S. Xie, “Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties,” Adv. Mater. 12, 1186-1190 (2000)
11. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, L. C. Chen, “SiC-capped Nanotip Arrays for Field Emission with Ultralow Turn-on Field, ” Appl. Phys. Lett. 83, 1420-1422 (2003)
12. G. Y. Zhang, X. Jiang, E. G. Wang, “Tubular Graphite Cones,” science 300, 472-474 (2003)
13. C. L. Tsai, C. F. Chen, C. L. Lin, “Field Emission from Well-Aligned Carbon Nanotips Grown in a Gated Device Structure,” Appl. Phys. Lett. 80, 1821-1823 (2002)
14. C. C. Striemer, P. M. Fauchet, ”Dynamic Etching of Silicon for Broadband Antireflection Applications,” Appl. Phys. Lett. 81, 2980-2982 (2002)
15. F. A. Ponce, D. P. Bour, “Nitride-based Semiconductors for Blue and Green Light-Emitting Devices,” Nature 386, 351-359 (1997)
16. F. G. Tarntair, L. C. Chen, S. L. Wei, W. K. Hong, K. H. Chen, H. C. Cheng, “High Current Density Field Emission From Arrays of Carbon Nanotubes and Diamond-Clad Si Tips,” J. Vac. Sci. Tech. B 18, 1207-1211 (2000)
17. P. D. Kichambare, F. G. Tarntair, L. C. Chen, K. H. Chen, H. C. Cheng, “Enhancement in Field Emission of Silicon Microtips by Bias-assisted Carburization,” J. Vac. Sci. Tech. B 18, 2722-2729 (2002)
18. C. B. Vartuli, J. D. MacKenzie, J. W. Lee, C. R. Abernathy, S. J. Pearton, and R. J. Shul, “Cl2/Ar and CH4/H2/Ar Dry Etching of III–V nitrides,” J. Appl. Phys. 80, 3705-3709 (1996)
19. D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN and SiC : A Review,” Materials Science and Engineering R 48, 1-46 (2005)
20. R. H. Fowler, L. W. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, Ser. A 119, 173-181 (1928)
21. S. C. Shi, C. F. Chen, S. Chattopadhyay, K. H. Chen and L. C. Chen, “Field Emission from Quasi-aligned Aluminum Nitride Nanotips,” Appl. Phys. Lett. 87, 073109 (2005)
22. Chih-Hsun Hsu, Hung-Chun Lo, Chia-Fu Chen, Chien Ting Wu, Jih-Shang Hwang, Debajyoti Das, Jeff Tsai, Li-Chyong Chen, and Kuei-Hsien Chen, “Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication,” Nano Lett. 4, 471-475 (2004)
Chapter 9
1. C. Aydina, A. Zaslavsky, G. J. Sonek and J. Goldstein, “Reduction of Reflection Losses in ZnGeP2 Using Motheye Antireflection Surface Relief Structures,” Appl. Phys. Lett. 80, 2242-2244 (2002)
2. C. H. Sun, P. Jiang and B. Jiang, “Broadband Moth-eye Antireflection Coatings on Silicon,” Appl. Phys. Lett. 92, 061112 (2008)
3. Y. P. Hsieh, H. Y. Chen, M. Z. Lin, S. C. Shiu, M. Hofmann, M. Y. Chern, X. Jia, Y. J. Yang, H. J. Chang, H. M. Huang, S. C. Tseng, L. C. Chen, K. H. Chen, C. F. Lin, C. T. Liang and Y. F. Chen, “Electroluminescence from ZnO/Si-Nanotips Light-Emitting Diodes,” Nano Lett. 9, 1839-1843 (2009)
4. X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen and Z. L. Wang, “Fabrication oh a High-brightness Blue-ligh-emitting Diodes Using a ZnO-Nanowire Array Grow on p-GaN Thin Film,” Adv. Mater. 21, 1-4 (2009)
5. M.-W. Ahn, K. S. Park, J.-H. Heo, J.-G. Park, D. W. Kim, K. J. Choi, J. H. Lee and S. H. Song, “Gas Sensing Properties of Defect-controlled ZnO-nanowire Gas Sensor,” Appl. Phys. Lett. 93, 263103 (2008)
6. J. Y. Son, S. J. Lim, J. H. Cho, W. K. Seong and H. Kim, “Synthesis of Horizontally Aligned ZnO Nanowires Localized at Terrace Edges and Application for High Sensitivity Gas Sensor,” Appl. Phys. Lett. 93, 053109 (2008)
7. Z. Jing and J. Zhan, “Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates,” Adv. Mater. 20, 4547-4551 (2008)