簡易檢索 / 詳目顯示

研究生: 費南多
Fernando Henrique Calderon Alvarado
論文名稱: 文字的表達: 解析網路世界文句的的隱藏意涵
Human Expressions: A Study on the Valuable Insights Embedded in Human Generated Content
指導教授: 陳宜欣
Chen, Yi-Shin
口試委員: 楊奕軒
Yang, Yi-Hsuan
彭文志
Peng, Wen-Chih
徐嘉連
Hsu, Jia-Lien
沈之涯
Shen, Chi-Ya
韓永楷
Hon, Wing-Kai
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 社群網路與人智計算國際博士學程
Social Networks and Human-Centered Computing
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 137
中文關鍵詞: 自然語言處理社交網絡機器學習資料
外文關鍵詞: Natural Language Processing, Data Science, Social Networks, Human Centered Computing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著Web2.0時代來臨及有關技術、應用不斷發展,為人類表達自身想法來全新空間。研究者們透過網路這個傳播媒介,探究人類在不同網路社群互動時的語言使用。人類的表達涵蓋了各種語言現象,且當中具有細微差別。這些文本資訊,為採用特徵學習的電腦系統獲取訊息中的涵義帶來挑戰。儘管有些發言的意思可以從字面上直接理解,但更為有趣的是,是這些文字背後有時候藏有其他意涵。尤其人們在網路上的互動還必須考慮個人與社會層次。在本篇研究中,蒐集了人們在網路社群上一系列的互動,採取不同過去特徵學習使用的方法論,擷取出人們在互動中真正要呈現的意思。再者,本研究還將展示各種資料蒐集法、特徵學習設計及模型建構,這些將有助完整人機互動的價值,且成功反映出人們在網路世界的行為,例如話語背後的諷刺意味,又或者是發言者的身心健康情況等。


    The advent of the Web 2.0 and further developments it brought opened a new space for humans to express their thoughts. This communication medium has provided a way for researchers to investigate the use of language on social networks across different groups and applications. Human expressions are conveyed with all sorts of linguistic phenomena and nuances that present various challenges for computational systems that aim to gain insights from textual information through various feature representations. Moreover these utterances can convey value in and explicit way but more interestingly, they can also carry implicit value. The nature of these human interactions on social networks is also embedded with considerations on both an individual and a societal level. In this work, we study different collections of human expressions on social media, present a thorough evaluation of the possible methodological alternatives to process them, and introduce a variety of applications showcasing the embedded insight which can be extracted from this data. Specifically, we introduce a variety of methods for data collection, feature design and model construction that can integrate value from human computer interactions and can successfully reflect human behaviors on domains ranging from sarcasm to mental health and others.

    Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation: From emotions to...? . . . . . . . . . . . . . . . . 3 1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.5 Overview and Organization . . . . . . . . . . . . . . . . . . . 5 Data Collection Mechanisms 7 2.1 Explicitly Generated Content Collection . . . . . . . . . . . . .7 2.2 Implicit Persona Collection . . . . . . . . . . . . . . . . . . .8 Learning Insights on Human Behavior 11 3.1 Behavioral Expression Learning . . . . . . . . . . . . . . . . .11 3.2 Linguistic Expression Learning . . . . . . . . . . . . . . . . .12 3.2.1 Semantic Linguistics Learning from Text . . . . . . . . . . . 13 Methodological Alternatives for Modelling Human Expressions 16 4.1 Machine Learning for Classifying Human Expressions . . . . . . .17 4.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.1 Activation Functions . . . . . . . . . . . . . . . . . . . . .20 4.2.2 RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.3 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 4.2.4 GRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 4.2.5 Bidirectional RNN . . . . . . . . . . . . . . . . . . . . . . 22 4.2.6 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.1 OpenAI GPT and BERT . . . . . . . . . . . . . . . . . . . . . 25 A General Framework for Value Extraction from Human-generated Content in Social Media 27 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 iv 5.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 29 5.3.1 Behavioral Features . . . . . . . . . . . . . . . . . . . . . 29 5.3.2 Linguistic Features . . . . . . . . . . . . . . . . . . . . . 29 5.4 Model Learning . . . . . . . . . . . . . . . . . . . . . . . . .31 5.4.1 Online Classifiers . . . . . . . . . . . . . . . . . . . . . .31 5.4.2 Deep Learning Models . . . . . . . . . . . . . . . . . . . . .31 5.5 Post processing . . . . . . . . . . . . . . . . . . . . . . . . 32 5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . .33 5.6.1 Ground Truth Generation . . . . . . . . . . . . . . . . . . . 33 5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Applications: Insights on Individuals 35 6.1 Emotion Detection on Social Media Texts . . . . . . . . . . . . 35 6.1.1 Traditional Methods for Emotion Recognition . . . . . . . . . 36 6.1.2 Modern Approaches for Emotion Recognition . . . . . . . . . . 37 6.1.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.1.4 Comparison with State-of-the-Art Approaches . . . . . . . . . 40 6.1.5 Comparison with Deep Learning Models . . . . . . . . . . . . 40 6.1.6 Results with Transfer Learning Methods . . . . . . . . . . . .42 6.1.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .43 6.2 Emotion Recognition in Conversations . . . . . . . . . . . . . .45 6.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.2.2 Adopted Framework . . . . . . . . . . . . . . . . . . . . . . 47 6.2.3 Model Comparison . . . . . . . . . . . . . . . . . . . . . . .48 6.2.4 Context Utilization Analysis . . . . . . . . . . . . . . . . .49 6.2.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . .51 6.3 Emotion Combination as Feature for Sarcasm Detection on Social Media 52 6.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . .55 6.4 Linguistic Patterns for Hate Speech Identification . . . . . . .58 6.4.1 Preliminary Findings . . . . . . . . . . . . . . . . . . . . .59 6.4.2 Linguistic Pattern based Hate Speech Identification . . . . . 62 v 6.4.3 Performance Comparison . . . . . . . . . . . . . . . . . . . 64 Applications: Insights on Society 67 7.1 Influence of Social Media Topics on Emotions . . . . . . . . . .67 7.1.1 Experiments and Results . . . . . . . . . . . . . . . . . . . 69 7.2 Echo-Chamber Detection on Social Media Platforms . . . . . . . .75 7.2.1 Experiments and Results . . . . . . . . . . . . . . . . . . . 76 7.3 Generalizable Representations for Fake News Detection . . . . . 79 7.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.3.2 Preliminary Cross-dataset Validation . . . . . . . . . . . . .82 7.3.3 Cross-source Validation . . . . . . . . . . . . . . . . . . . 84 Applications: Healthcare and Creativity 89 8.1 Identifying Self-Reported Drug Effects . . . . . . . . . . . . .89 8.1.1 Data Collection and Sentence Bi-Gram Extraction . . . . . . . 91 8.1.2 Drug-Symptom Pairs and Segment Extraction . . . . . . . . . . 91 8.1.3 Data Annotation . . . . . . . . . . . . . . . . . . . . . . . 92 8.1.4 Vocabulary Analysis . . . . . . . . . . . . . . . . . . . . . 93 8.1.5 Multi-Target BERT Performance . . . . . . . . . . . . . . . . 94 8.1.6 Multi-Target BERT Experiments on other Biomedical Relation- ship Extraction Tasks . . . . . . . . . . . . . . . . . . . . . . . 98 8.2 Time-Series-Based Early Manic Prediction . . . . . . . . . . . .99 8.2.1 Experiments & Results . . . . . . . . . . . . . . . . . . . .101 8.2.2 A priori manic prediction using behavioral features and the TEMP framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.2.3 Manic onset analysis . . . . . . . . . . . . . . . . . . . . 107 8.2.4 Syntactic pattern analysis . . . . . . . . . . . . . . . . . 110 8.3 Generating Music Variations . . . . . . . . . . . . . . . . . .112 8.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . .114 Conclusion 117 References 118

    [1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
    Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
    In Advances in Neural Information Processing Systems, pages 5998–6008, 2017.
    [2] Chris Callison-Burch and Mark Dredze. Creating speech and language data with
    amazon’s mechanical turk. In Proceedings of the NAACL HLT 2010 Workshop
    on Creating Speech and Language Data with Amazon’s Mechanical Turk, pages
    1–12. Association for Computational Linguistics, 2010.
    [3] Svetlana Kiritchenko and Saif M Mohammad. Capturing reliable fine-grained
    sentiment associations by crowdsourcing and best–worst scaling. In Proceedings
    of NAACL-HLT, pages 811–817, 2016.
    [4] Saif Mohammad and Felipe Bravo-Marquez. Emotion intensities in tweets. In
    Proceedings of the 6th Joint Conference on Lexical and Computational Seman-
    tics (*SEM 2017), pages 65–77, Vancouver, Canada, August 2017. Association
    for Computational Linguistics.
    [5] Chao-Chun Hsu, Sheng-Yeh Chen, Chuan-Chun Kuo, Ting-Hao Huang, and
    Lun-Wei Ku. Emotionlines: An emotion corpus of multi-party conversations. In
    Proceedings of the Eleventh International Conference on Language Resources
    and Evaluation (LREC 2018), 2018.
    [6] Aliaksei Severyn and Alessandro Moschitti. Twitter sentiment analysis with deep
    convolutional neural networks. In Proceedings of the 38th International ACM
    SIGIR Conference on Research and Development in Information Retrieval, pages
    959–962, 2015.
    [7] Carlos Argueta, Elvis Saravia, and Yi-Shin Chen. Unsupervised graph-based
    patterns extraction for emotion classification. In Advances in Social Networks
    Analysis and Mining (ASONAM), 2015 IEEE/ACM International Conference on,
    pages 336–341. ACM, 2015.
    [8] Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. A large self-annotated
    corpus for sarcasm. arXiv preprint arXiv:1704.05579, 2017.
    118
    [9] Yen-Hao Huang, Lin-Hung Wei, and Yi-Shin Chen. Detection of the prodromal
    phase of bipolar disorder from psychological and phonological aspects in social
    media. arXiv preprint arXiv:1712.09183, 2017.
    [10] Muhammad Abdul-Mageed and Lyle Ungar. Emonet: Fine-grained emotion de-
    tection with gated recurrent neural networks. In Proceedings of the 55th Annual
    Meeting of the Association for Computational Linguistics, pages 718–728. ACL,
    2017.
    [11] Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin
    Chen. Carer: Contextualized affect representations for emotion recognition. In
    Proceedings of the 2018 Conference on Empirical Methods in Natural Language
    Processing, pages 3687–3697, 2018.
    [12] Fernando H Calderon, Po Chen Kuo, Huang Yen-Hao, and Yi-Shin Chen. Emo-
    tion combination in social media comments as features for sarcasm detection.
    Workshop on Issues of Sentiment Discovery and Opinion Mining, 2019.
    [13] Fernando H Calder ́on, Li-Kai Cheng, Ming-Jen Lin, Yen-Hao Huang, and Yi-
    Shin Chen. Content-based echo chamber detection on social media platforms.
    In Proceedings of the 2019 IEEE/ACM International Conference on Advances in
    Social Networks Analysis and Mining, pages 597–600, 2019.
    [14] Jan Deriu, Aurelien Lucchi, Valeria De Luca, Aliaksei Severyn, Simon M ̈uller,
    Mark Cieliebak, Thomas Hofmann, and Martin Jaggi. Leveraging large amounts
    of weakly supervised data for multi-language sentiment classification. In Pro-
    ceedings of the 26th International Conference on World Wide Web, pages 1045–
    1052. International World Wide Web Conferences Steering Committee, 2017.
    [15] Minsu Park, Chiyoung Cha, and Meeyoung Cha. Depressive moods of users por-
    trayed in twitter. In Proceedings of the ACM SIGKDD Workshop on Healthcare
    Informatics (HI-KDD), pages 1–8. ACM, 2012.
    [16] Lenore Sawyer Radloff. The ces-d scale: A self-report depression scale for re-
    search in the general population. Applied psychological measurement, 1(3):385–
    401, 1977.
    119
    [17] Megan A Moreno, Lauren A Jelenchick, Katie G Egan, Elizabeth Cox, Henry
    Young, Kerry E Gannon, and Tara Becker. Feeling bad on facebook: Depres-
    sion disclosures by college students on a social networking site. Depression and
    anxiety, 28(6):447–455, 2011.
    [18] Glen Coppersmith, Mark Dredze, and Craig Harman. Quantifying mental health
    signals in twitter. In Proceedings of the Workshop on Computational Linguistics
    and Clinical Psychology: From Linguistic Signal to Clinical Reality, pages 51–
    60, 2014.
    [19] Munmun De Choudhury, Scott Counts, and Eric Horvitz. Predicting postpartum
    changes in emotion and behavior via social media. In Proceedings of the SIGCHI
    Conference on Human Factors in Computing Systems, pages 3267–3276. ACM,
    2013.
    [20] Chun-Hao Chang, Elvis Saravia, and Yi-Shin Chen. Subconscious crowdsourc-
    ing: A feasible data collection mechanism for mental disorder detection on social
    media. In Proceedings of the 2016 IEEE/ACM International Conference on Ad-
    vances in Social Networks Analysis and Mining 2016, pages 374–379. ACM,
    2016.
    [21] Munmun De Choudhury, Scott Counts, and Eric Horvitz. Predicting postpartum
    changes in emotion and behavior via social media. In Proceedings of the SIGCHI
    Conference on Human Factors in Computing Systems, pages 3267–3276. ACM,
    2013.
    [22] Hong-Han Shuai, Chih-Ya Shen, De-Nian Yang, Yi-Feng Carol Lan, Wang-
    Chien Lee, S Yu Philip, and Ming-Syan Chen. A comprehensive study on so-
    cial network mental disorders detection via online social media mining. IEEE
    Transactions on Knowledge and Data Engineering, 30(7):1212–1225, 2018.
    [23] James Pennebaker, Roger Booth, and Martha Francis. Linguistic inquiry and
    word count: Liwc [computer software]. Austin, TX: liwc. net, 2007.
    [24] Gerard Salton and Michael J McGill. Introduction to modern information re-
    trieval. McGraw-Hill, Inc., 1986.
    120
    [25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
    of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
    [26] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global
    vectors for word representation. In Proceedings of the 2014 Conference on Em-
    pirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.
    ACL, 2014.
    [27] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
    lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
    2014.
    [28] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
    Hovy. Hierarchical attention networks for document classification. In Proceed-
    ings of the 2016 Conference of the North American Chapter of the Association for
    Computational Linguistics: Human Language Technologies, pages 1480–1489,
    San Diego, California, June 2016. Association for Computational Linguistics.
    [29] Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana Volkova, and Yejin Choi.
    Truth of varying shades: Analyzing language in fake news and political fact-
    checking. In Proceedings of the 2017 Conference on Empirical Methods in Nat-
    ural Language Processing, pages 2931–2937, 2017.
    [30] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
    Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.
    arXiv preprint arXiv:1802.05365, 2018.
    [31] Yoon Kim. Convolutional neural networks for sentence classification. In Pro-
    ceedings of the 2014 Conference on Empirical Methods in Natural Language
    Processing (EMNLP), pages 1746–1751, Doha, Qatar, October 2014. Associa-
    tion for Computational Linguistics.
    [32] Yen-Hao Huang, Ting-Wei Liu, Ssu-Rui Lee, Ya-Wen Yu, Wan-Hsuan Lee, Fer-
    nando Henrique Calderon Alvarado, and Yi-Shin Chen. Discovering the latent
    writing style from articles: A contextualized feature extraction approach. Inter-
    national Journal of Computational Linguistics & Chinese Language Processing,
    2020.
    121
    [33] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
    Pre-training of deep bidirectional transformers for language understanding. In
    Proceedings of the 2019 Conference of the North American Chapter of the Asso-
    ciation for Computational Linguistics: Human Language Technologies, Volume
    1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June
    2019. Association for Computational Linguistics.
    [34] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
    and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language
    understanding. In Advances in neural information processing systems, pages
    5754–5764, 2019.
    [35] Tom Mitchell, Bruce Buchanan, Gerald DeJong, Thomas Dietterich, Paul Rosen-
    bloom, and Alex Waibel. Machine learning. Annual review of computer science,
    4(1):417–433, 1990.
    [36] Mike Schuster and Kuldip Paliwal. Bidirectional recurrent neural networks.
    IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.
    [37] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recogni-
    tion with deep recurrent neural networks. In 2013 IEEE international conference
    on acoustics, speech and signal processing, pages 6645–6649. IEEE, 2013.
    [38] Ronan Collobert and Jason Weston. A unified architecture for natural language
    processing: Deep neural networks with multitask learning. In Proceedings of
    the 25th international conference on Machine learning, pages 160–167. ACM,
    2008.
    [39] Yoon Kim. Convolutional neural networks for sentence classification. arXiv
    preprint arXiv:1408.5882, 2014.
    [40] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional net-
    works for text classification. In Proceedings of Neural Information Processing
    Systems, pages 649–657, 2015.
    [41] Soujanya Poria, Iti Chaturvedi, Erik Cambria, and Amir Hussain. Convolu-
    tional mkl based multimodal emotion recognition and sentiment analysis. In
    122
    Proceedings of Data Mining (ICDM), 2016 IEEE 16th International Conference
    on, pages 439–448. IEEE, 2016.
    [42] Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin, and Zhiyuan Liu. Neural
    sentiment classification with user and product attention. In Proceedings of the
    2016 Conference on Empirical Methods in Natural Language Processing, pages
    1650–1659, 2016.
    [43] Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and Chandan K Reddy. Neu-
    ral abstractive text summarization with sequence-to-sequence models. arXiv
    preprint arXiv:1812.02303, 2018.
    [44] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for
    text classification. In Proceedings of the 56th Annual Meeting of the Association
    for Computational Linguistics, pages 328–339, 2018.
    [45] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
    Improving language understanding by generative pre-training. URL
    https://s3-us-west-2. amazonaws. com/openai-assets/research-covers/language-
    unsupervised/language understanding paper. pdf, 2018.
    [46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
    training of deep bidirectional transformers for language understanding. arXiv
    preprint arXiv:1810.04805, 2018.
    [47] Valentina Sintsova, Claudiu-Cristian Musat, and Pearl Pu. Fine-grained emotion
    recognition in olympic tweets based on human computation. In Proceedings of
    the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and
    Social Media Analysis, pages 12–20, 2013.
    [48] Saif Mohammad and Peter Turney. Crowdsourcing a word–emotion association
    lexicon. Computational Intelligence, 29(3):436–465, 2013.
    [49] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using
    distant supervision. CS224N Project Report, Stanford, 2009.
    [50] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for
    relation extraction without labeled data. In Proceedings of the Joint Conference
    123
    of the 47th Annual Meeting of the ACL and the 4th International Joint Conference
    on Natural Language Processing of the AFNLP, pages 1003–1011. ACL, 2009.
    [51] Saif Mohammad. # emotional tweets. In Proceedings of the First Joint Con-
    ference on Lexical and Computational Semantics-Volume 1: Proceedings of the
    main conference and the shared task, and Volume 2: Proceedings of the Sixth
    International Workshop on Semantic Evaluation, pages 246–255. ACL, 2012.
    [52] Saif Mohammad and Svetlana Kiritchenko. Using hashtags to capture fine emo-
    tion categories from tweets. Computational Intelligence, 31(2):301–326, 2015.
    [53] Yen-Hao Huang, Ting-Wei Liu, Ssu-Rui Lee, Fernando Henrique Calderon Al-
    varado, and Yi-Shin Chen. Conquering cross-source failure for news credibility:
    Learning generalizable representations beyond content embedding. In Proceed-
    ings of The Web Conference 2020, WWW ’20, page 774–784, New York, NY,
    USA, 2020. Association for Computing Machinery.
    [54] Elvis Saravia, Carlos Argueta, and Yi-Shin Chen. Unsupervised graph-based pat-
    tern extraction for multilingual emotion classification. Social Network Analysis
    and Mining, 6(1):92, 2016.
    [55] Svitlana Volkova, Theresa Wilson, and David Yarowsky. Exploring sentiment in
    social media: Bootstrapping subjectivity clues from multilingual twitter streams.
    In Proceedings of the 51st Annual Meeting of the Association for Computational
    Linguistics, pages 505–510. ACL, 2013.
    [56] Karin Becker, Viviane Moreira, and Aline G.L. dos Santos. Multilingual emotion
    classification using supervised learning: Comparative experiments. Information
    Processing & Management, 53(3):684–704, 2017.
    [57] Febian Pedregosa, Ga ̈el Varoquaux, Alexandre Gramfort, Vincent Michel,
    Bertrand Thirion, Olivier Grisel, Mathieu Blondel, et al. Scikit-learn: Ma-
    chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
    2011.
    124
    [58] Bernhard Kratzwald, Suzana Ilic, Mathias Kraus, Stefan Feuerriegel, and Hel-
    mut Prendinger. Decision support with text-based emotion recognition: Deep
    learning for affective computing. arXiv preprint arXiv:1803.06397, 2018.
    [59] Elvis Saravia, Hsien-Chi Toby Liu, and Yi-Shin Chen. Deepemo: Learn-
    ing and enriching pattern-based emotion representations. arXiv preprint
    arXiv:1804.08847, 2018.
    [60] Yla R. Tausczik and James W. Pennebaker. The psychological meaning of words:
    Liwc and computerized text analysis methods. Journal of Language and Social
    Psychology, 29(1):24–54, 2010.
    [61] John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood,
    boom-boxes and blenders: Domain adaptation for sentiment classification. In
    Proceedings of the 45th Annual Meeeting of the Association of Computational
    Linguistics, pages 440–447. ACL, 2007.
    [62] Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan, and Amit Sheth. Har-
    nessing twitter “big data” for automatic emotion identification. In Proceedings
    of Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference
    on and 2012 International Confernece on Social Computing (SocialCom), pages
    587–592. IEEE, 2012.
    [63] Kirk Roberts, Michael Roach, Joseph Johnson, Josh Guthrie, and Sanda
    Harabagiu. Empatweet: Annotating and detecting emotions on twitter. In LREC,
    pages 3806–3813, 2012.
    [64] Ashequl Qadir and Ellen Riloff. Bootstrapped learning of emotion hashtags#
    hashtags4you. In Proceedings of the 4th Workshop on Computational Ap-
    proaches to Subjectivity, Sentiment and Social Media Analysis, pages 2–11, 2013.
    [65] Svitlana Volkova and Yoram Bachrach. Inferring perceived demographics from
    user emotional tone and user-environment emotional contrast. In Proceedings of
    the 54th Annual Meeting of the Association for Computational Linguistics, pages
    1567–1578. ACL, 2016.
    125
    [66] Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune Lehmann.
    Using millions of emoji occurrences to learn any-domain representations for detecting
    sentiment, emotion and sarcasm. In Proceedings of the 2017 Conference
    on Empirical Methods in Natural Language Processing, pages 1615–1625. ACL,
    2017.
    [67] Harald Wallbott and Klaus Scherer. How universal and specific is emotional
    experience? evidence from 27 countries on five continents. Information (International
    Social Science Council), pages 763–795, 1986.
    [68] Carlo Strapparava and Rada Mihalcea. Semeval-2007 task 14: Affective text. In
    Proceedings of the 4th International Workshop on Semantic Evaluations, pages
    70–74. ACL, 2007.
    [69] Jonathon Read. Using emoticons to reduce dependency in machine learning techniques
    for sentiment classification. In Proceedings of the ACL student research
    workshop, pages 43–48. ACL, 2005.
    [70] Roberto Gonz´alez-Ib´anez, Smaranda Muresan, and Nina Wacholder. Identifying
    sarcasm in twitter: a closer look. In Proceedings of the 49th Annual Meeting of
    the Association for Computational Linguistics: Human Language Technologies,
    pages 581–586. ACL, 2011.
    [71] Matthew Purver and Stuart Battersby. Experimenting with distant supervision for
    emotion classification. In Proceedings of the 13th Conference of the European
    Chapter of the Association for Computational Linguistics, pages 482–491. ACL,
    2012.
    [72] Robert Plutchik. The nature of emotions human emotions have deep evolutionary
    roots, a fact that may explain their complexity and provide tools for clinical
    practice. American Scientist, 89(4):344–350, 2001.
    [73] Yoav Goldberg. A primer on neural network models for natural language processing.
    Journal of Artificial Intelligence Research, 57:345–420, 2016.
    126
    [74] Feng Liu and Sally Maitlis. Emotional dynamics and strategizing processes: A
    study of strategic conversations in top team meetings. Journal of Management
    Studies, 51(2):202–234, 2014.
    [75] Michael Morris and Dacher Keltner. How emotions work: The social functions
    of emotional expression in negotiations. Research in Organizational Behavior -
    RES ORGAN BEH, 22:1–50, 12 2000.
    [76] Soujanya Poria, Navonil Majumder, Rada Mihalcea, and Eduard H. Hovy. Emotion
    recognition in conversation: Research challenges, datasets, and recent advances.
    CoRR, abs/1905.02947, 2019.
    [77] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
    Pre-training of deep bidirectional transformers for language understanding. In
    Proceedings of the 2019 Conference of the North American Chapter of the Association
    for Computational Linguistics: Human Language Technologies, pages
    4171–4186, 2019.
    [78] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
    Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of
    language representations. arXiv preprint arXiv:1909.11942, 2019.
    [79] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
    Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
    robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
    2019.
    [80] Devamanyu Hazarika, Soujanya Poria, Amir Zadeh, Erik Cambria, Louis-
    Philippe Morency, and Roger Zimmermann. Conversational memory network
    for emotion recognition in dyadic dialogue videos. In Proceedings of the 2018
    Conference of the North American Chapter of the Association for Computational
    Linguistics: Human Language Technologies, pages 2122–2132, New Orleans,
    Louisiana, June 2018. Association for Computational Linguistics.
    [81] Wenxiang Jiao, Haiqin Yang, Irwin King, and Michael R. Lyu. HiGRU: Hierarchical
    gated recurrent units for utterance-level emotion recognition. In Proceedings
    of the 2019 Conference of the North American Chapter of the Association
    127
    for Computational Linguistics: Human Language Technologies, pages 397–406,
    Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
    [82] Fernando H Calder´on Alvarado, Mau-Yun Ma, Yen-Hao Huang, and Yi-Shin
    Chen. Clamp: Cross-level attention for multi-party conversational emotion
    recognition. In 2021 IEEE 22nd International Conference on Information Reuse
    and Integration for Data Science (IRI), pages 302–309. IEEE, 2021.
    [83] Navonil Majumder, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea,
    Alexander Gelbukh, and Erik Cambria. Dialoguernn: An attentive rnn for emotion
    detection in conversations. In Proceedings of the AAAI Conference on Artificial
    Intelligence, volume 33, pages 6818–6825, 2019.
    [84] Deepanway Ghosal, Navonil Majumder, Soujanya Poria, Niyati Chhaya, and
    Alexander Gelbukh. DialogueGCN: A graph convolutional neural network for
    emotion recognition in conversation. In Proceedings of the 2019 Conference on
    Empirical Methods in Natural Language Processing and the 9th International
    Joint Conference on Natural Language Processing, pages 154–164, Hong Kong,
    China, November 2019. Association for Computational Linguistics.
    [85] Wei Li, Wei Shao, Shaoxiong Ji, and Erik Cambria. Bieru: Bidirectional
    emotional recurrent unit for conversational sentiment analysis. arXiv preprint
    arXiv:2006.00492, 2020.
    [86] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
    Philip S. Yu. A Comprehensive Survey on Graph Neural Networks. arXiv eprints,
    page arXiv:1901.00596, January 2019.
    [87] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph
    Convolutional Networks. arXiv e-prints, page arXiv:1609.02907, September
    2016.
    [88] David Bamman and Noah A Smith. Contextualized sarcasm detection on twitter.
    In ICWSM, pages 574–577, Oxford,UK, 2015. Citeseer, AAAI.
    [89] Aditya Joshi, Vinita Sharma, and Pushpak Bhattacharyya. Harnessing context
    incongruity for sarcasm detection. In ACL (2), pages 757–762, 2015.
    [90] Christopher Mueller. Positive feedback loops: Sarcasm and the pseudo-argument
    in reddit communities. Working Papers in TESOL and Applied Linguistics,
    16(2):84–97, 2016.
    [91] Robert Plutchik and Henry Kellerman. Emotion: theory, research and experience.
    Vol. 1, Theories of emotion. Academic Press, 1980.
    [92] Santosh Kumar Bharti, Korra Sathya Babu, and Sanjay Kumar Jena. Parsingbased
    sarcasm sentiment recognition in twitter data. In Advances in Social Networks
    Analysis and Mining (ASONAM), 2015 IEEE/ACM International Conference
    on, pages 1373–1380, Paris, France, 2015. IEEE, ACM.
    [93] Bloomberg. Disney dropped twitter pursuit partly over image, oct 2016.
    [94] Forbes. Europe fine companies for hate speech, jun 2017.
    [95] United Nations General Assembly Resolution 2200A [XX1]. International
    covenant on civil and political rights, 1966.
    [96] Carlos Argueta, Fernando H Calderon, and Yi-Shin Chen. Multilingual emotion
    classifier using unsupervised pattern extraction from microblog data. Intelligent
    Data Analysis, 20(6):1477–1502, 2016.
    [97] Fernando H Calder´on, Namrita Balani, Jherez Taylor, Melvyn Peignon, Yen-Hao
    Huang, and Yi-Shin Chen. Linguistic patterns for code word resilient hate speech
    identification. Sensors, 21(23):7859, 2021.
    [98] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
    word vectors with subword information. arXiv preprint arXiv:1607.04606,
    2016.
    [99] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Automated
    hate speech detection and the problem of offensive language. In Proceedings
    of the International AAAI Conference on Web and Social Media, volume 11,
    2017.
    [100] Foteini Alvanaki, Michel Sebastian, Krithi Ramamritham, and GerhardWeikum.
    Enblogue: emergent topic detection in web 2.0 streams. In Proceedings of the
    2011 ACM SIGMOD International Conference on Management of data, pages
    1271–1274. ACM, 2011.
    [101] Hila Becker, Mor Naaman, and Luis Gravano. Beyond trending topics: Realworld
    event identification on twitter. ICWSM, 11:438–441, 2011.
    [102] Fernando Calderon, Chun-Hao Chang, Carlos Argueta, Elvis Saravia, and Yi-
    Shin Chen. Analyzing event opinion transition through summarized emotion visualization.
    In Proceedings of the 2015 IEEE/ACM International Conference on
    Advances in Social Networks Analysis and Mining 2015, pages 749–752. ACM,
    2015.
    [103] Fernando H Calderon Alvarado and Yi-Shin Chen. Emotion-based topic impact
    on social media. International Journal of Big Data Intelligence, 5(1-2):90–104,
    2018.
    [104] Katherine A. Heller Charles Blundell, Jeff Beck. Modelling reciprocating relationships
    with hawkes processes. In Proceedings of Advances in Neural Information
    Processing Systems (NIPS 2012), 2012.
    [105] P. O. Perry and P. J. Wolfe. Point process modelling for directed interaction
    networks. Journal of the Royal Statistical Society: Series B (Methodology),
    75(5)(821–849), 2013.
    [106] Zoubin Ghahramani Tomoharu Iwata, Amar Shah. Discovering latent influence
    in online social activities via shared cascade poisson processes. In Proceedings
    of the 19th ACM SIGKDD International Conference on Knowledge Discovery
    and Data Mining, pages 266–274, 2013.
    [107] K. Zha H. Zhou and L. Song. Learning triggering kernels for multi-dimensional
    hawkes processes. In Proceedings of the 30th International Conference on Machine
    Learning, pages 1301–1309, 2013.
    [108] Swapna Somasundaranand and Janyce Wiebe. Recognizing stances in ideological
    on-line debates. NAACL HLT 2010 Workshop on Computational Approaches
    to Analysis and Generation of Emotion in Text, pages 116–124, June 2010.
    [109] Kazi Saidul Hasan and Vincent Ng. Stance classification of ideological debates:
    Data, models, features, and constraints. In Proceedings of the Sixth International
    Joint Conference on Natural Language Processing, 2013.
    [110] Parinaz Sobhani Saif M. Mohammad and Svetlana Kiritchenko. Detecting stance
    in tweets and analyzing its interaction with sentiment. In Proceedings of the Joint
    Conference on Lexical and Computational Semantics (*Sem), August 2016.
    [111] Saif M. Mohammad Parinaz Sobhani and Svetlana Kiritchenko. Stance and sentiment
    in tweets. Special Section of the ACM Transactions on Internet Technology
    on Argumentation in Social Media, 17(3), 2017.
    [112] Hanna Wallach Fangjian Guo, Charles Blundell and Katherine Heller. The
    bayesian echo chamber: Modeling social influence via linguistic accommodation.
    In Proceedings of the 18th International Conference on Artificial Intelligence
    and Statistics (AISTATS), pages 315–323, 2015.
    [113] Hunt Allcott and Matthew Gentzkow. Social media and fake news in the 2016
    election. Journal of economic perspectives, 31(2):211–36, 2017.
    [114] Andrew Guess, Brendan Nyhan, and Jason Reifler. Selective exposure to misinformation:
    Evidence from the consumption of fake news during the 2016 us
    presidential campaign. European Research Council, 9, 2018.
    [115] Alexandre Bovet and Hern´an A Makse. Influence of fake news in twitter during
    the 2016 us presidential election. Nature communications, 10(1):7, 2019.
    [116] Soroush Vosoughi, Deb Roy, and Sinan Aral. The spread of true and false news
    online. Science, 359(6380):1146–1151, 2018.
    [117] Zhiwei Jin, Juan Cao, Yongdong Zhang, and Jiebo Luo. News verification by
    exploiting conflicting social viewpoints in microblogs. In Thirtieth AAAI Conference
    on Artificial Intelligence, 2016.
    [118] Manish Gupta, Peixiang Zhao, and Jiawei Han. Evaluating event credibility on
    twitter. In Proceedings of the 2012 SIAM International Conference on Data
    Mining, pages 153–164. SIAM, 2012.
    [119] Shuo Yang, Kai Shu, Suhang Wang, Renjie Gu, Fan Wu, and Huan Liu. Unsupervised
    fake news detection on social media: A generative approach. In Proceedings
    of 33rd AAAI Conference on Artificial Intelligence, 2019.
    [120] Kai Shu, SuhangWang, and Huan Liu. Beyond news contents: The role of social
    context for fake news detection. In Proceedings of the Twelfth ACM International
    Conference on Web Search and Data Mining, pages 312–320. ACM, 2019.
    [121] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A
    review of relational machine learning for knowledge graphs. Proceedings of the
    IEEE, 104(1):11–33, 2015.
    [122] Xinyi Zhou, Atishay Jain, Vir V Phoha, and Reza Zafarani. Fake news early
    detection: A theory-driven model. arXiv preprint arXiv:1904.11679, 2019.
    [123] Heejung Jwa, Dongsuk Oh, Kinam Park, Jang Mook Kang, and Hueiseok Lim.
    exbake: Automatic fake news detection model based on bidirectional encoder
    representations from transformers (bert). Applied Sciences, 9(19):4062, 2019.
    [124] Kai-Chou Yang, Timothy Niven, and Hung-Yu Kao. Fake news detection as
    natural language inference. The Twelfth International Conference on Web Search
    and Data Mining., 2019.
    [125] Junaed Younus Khan, Md Khondaker, Tawkat Islam, Anindya Iqbal, and Sadia
    Afroz. A benchmark study on machine learning methods for fake news detection.
    arXiv preprint arXiv:1905.04749, 2019.
    [126] Hamid Karimi and Jiliang Tang. Learning hierarchical discourse-level structure
    for fake news detection. In Proceedings of the 2019 Conference of the North
    American Chapter of the Association for Computational Linguistics: Human
    Language Technologies, Volume 1 (Long and Short Papers), pages 3432–3442,
    Minneapolis, Minnesota, jun 2019. Association for Computational Linguistics.
    [127] Jeppe Nørregaard, Benjamin D Horne, and Sibel Adalı. Nela-gt-2018: A large
    multi-labelled news dataset for the study of misinformation in news articles. In
    Proceedings of the International AAAI Conference on Web and Social Media,
    volume 13, pages 630–638, 2019.
    [128] Nicolas R¨usch, Matthias C Angermeyer, and Patrick W Corrigan. Mental illness
    stigma: Concepts, consequences, and initiatives to reduce stigma. European
    psychiatry, 20(8):529–539, 2005.
    [129] Arjan ER Bos, Daphne Kanner, Peter Muris, Birgit Janssen, and Birgit Mayer.
    Mental illness stigma and disclosure: Consequences of coming out of the closet.
    Issues in Mental Health Nursing, 30(8):509–513, 2009.
    [130] Sairam Balani andMunmun De Choudhury. Detecting and characterizing mental
    health related self-disclosure in social media. In Proceedings of the 33rd Annual
    ACM Conference Extended Abstracts on Human Factors in Computing Systems,
    pages 1373–1378. ACM, 2015.
    [131] Xiao Ma, Jeff Hancock, and Mor Naaman. Anonymity, intimacy and selfdisclosure
    in social media. In Proceedings of the 2016 CHI conference on human
    factors in computing systems, pages 3857–3869. ACM, 2016.
    [132] Munmun De Choudhury and Sushovan De. Mental health discourse on reddit:
    Self-disclosure, social support, and anonymity. In Eighth International AAAI
    Conference on Weblogs and Social Media, 2014.
    [133] Keyuan Jiang, Ricardo Calix, and Matrika Gupta. Construction of a personal experience
    tweet corpus for health surveillance. In Proceedings of the 15th workshop
    on biomedical natural language processing, pages 128–135, 2016.
    [134] James W Pennebaker, Ryan L Boyd, Kayla Jordan, and Kate Blackburn. The
    development and psychometric properties of liwc2015. Technical report, The
    University of Texas, 2015.
    [135] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
    Chan Ho So, and Jaewoo Kang. Biobert: pre-trained biomedical language representation
    model for biomedical text mining. arXiv preprint arXiv:1901.08746,
    2019.
    [136] ErikMVan Mulligen, Annie Fourrier-Reglat, David Gurwitz, Mariam Molokhia,
    Ainhoa Nieto, Gianluca Trifiro, Jan A Kors, and Laura I Furlong. The eu-adr
    corpus: annotated drugs, diseases, targets, and their relationships. Journal of
    biomedical informatics, 45(5):879–884, 2012.
    [137] A` lex Bravo, Janet Pin˜ero, Nu´ria Queralt-Rosinach, Michael Rautschka, and
    Laura I Furlong. Extraction of relations between genes and diseases from text
    and large-scale data analysis: implications for translational research. BMC bioinformatics,
    16(1):55, 2015.
    [138] P. Wierzbiski, A. Zdanowicz, J. Klekowska, M. Broniarczyk-Czarniak, and
    K. Zboralski. [The epidemiology of suicide in bipolar disorder in the manic
    episode–preliminary reports]. Pol. Merkur. Lekarski, 36(214):254–256, Apr
    2014.
    [139] Attila J. Pulay, Deborah A. Dawson, Deborah S. Hasin, Ris¨e B. Goldstein,
    W. June Ruan, Roger P. Pickering, Boji Huang, S. Patricia Chou, and Bridget F.
    Grant. Violent behavior and dsm-iv psychiatric disorders: results from the national
    epidemiologic survey on alcohol and related conditions. The Journal of
    Clinical Psychiatry, 69(1):12–22, Jan 2008. 18312033[pmid].
    [140] Michele Raja and Antonella Azzoni. Hostility and violence of acute psychiatric
    inpatients. Clinical Practice and Epidemiology in Mental Health, 1(1):11, Jul
    2005.
    [141] Jan Volavka. Violence in schizophrenia and bipolar disorder. Psychiatria Danubina,
    25(1):24–33, Mar 2013. 23470603[pmid].
    [142] Brennan PA, Mednick SA, and Hodgins S. Major mental disorders and criminal
    violence in a Danish birth cohort. Archives of General Psychiatry, 2000.
    [143] Seena Fazel, Paul Lichtenstein, Martin Grann, Guy M. Goodwin, and Niklas
    L˚angstr¨om. Bipolar disorder and violent crime: new evidence from populationbased
    longitudinal studies and systematic review. Archives of General Psychiatry,
    67(9):931–938, Sep 2010. 20819987[pmid].
    [144] Darryl Bassett. Risk assessment and management in bipolar disorders. The Medical
    journal of Australia, 193:S21–3, Aug 2010.
    [145] Eleanor Pontin, Sarah Peters, Fiona Lobban, Anne Rogers, and Richard K. Morriss.
    Enhanced relapse prevention for bipolar disorder: a qualitative investigation
    of value perceived for service users and care coordinators. Implementation science
    : IS, 4:4–4, Feb 2009. 19203373[pmid].
    [146] J. A. Smith and N. Tarrier. Prodromal symptoms in manic depressive psychosis.
    Social Psychiatry and Psychiatric Epidemiology, 27(5):245–248, Oct 1992.
    [147] S. Malkoff-Schwartz, E. Frank, B. Anderson, J. T. Sherrill, L. Siegel, D. Patterson,
    and D. J. Kupfer. Stressful life events and social rhythm disruption in
    the onset of manic and depressive bipolar episodes: a preliminary investigation.
    Archives of General Psychiatry, 55(8):702–707, Aug 1998.
    [148] S. Malkoff-Schwartz, E. Frank, B. P. Anderson, S. A. Hlastala, J. F. Luther, J. T.
    Sherrill, P. R. Houck, and D. J. Kupfer. Social rhythm disruption and stressful
    life events in the onset of bipolar and unipolar episodes. Psychological Medecine,
    30(5):1005–1016, Sep 2000.
    [149] Yen-Hao Huang, Lin-Hung Wei, and Yi-Shin Chen. Detection of the prodromal
    phase of bipolar disorder from psychological and phonological aspects in social
    media. CoRR, abs/1712.09183, 2017.
    [150] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
    Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
    CoRR, abs/1706.03762, 2017.
    [151] Molly Ireland and Matthias Mehl. Natural language use as a marker of personality.
    Oxford handbook of language and social psychology, pages 201–218, 01
    2014.
    [152] Bob L Sturm, Joao Felipe Santos, Oded Ben-Tal, and Iryna Korshunova. Music
    transcription modelling and composition using deep learning. arXiv preprint
    arXiv:1604.08723, 2016.
    [153] Hang Chu, Raquel Urtasun, and Sanja Fidler. Song from pi: A musically plausible
    network for pop music generation. arXiv preprint arXiv:1611.03477, 2016.
    [154] Gino Brunner, Yuyi Wang, Roger Wattenhofer, and Jonas Wiesendanger. Jambot:
    Music theory aware chord based generation of polyphonic music with lstms.
    In Tools with Artificial Intelligence (ICTAI), 2017 IEEE 29th International Conference
    on, pages 519–526. IEEE, 2017.
    [155] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. Midinet: A convolutional
    generative adversarial network for symbolic-domain music generation. arXiv
    preprint arXiv:1703.10847, 2017.
    [156] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative
    adversarial nets with policy gradient. In AAAI, pages 2852–2858, 2017.
    [157] John Biles et al. Genjam: A genetic algorithm for generating jazz solos. In
    ICMC, volume 94, pages 131–137. Ann Arbor, MI, 1994.
    [158] Chien-Hung Liu and Chuan-Kang Ting. Fusing flamenco and argentine tango
    by evolutionary composition. In Evolutionary Computation (CEC), 2017 IEEE
    Congress on, pages 2645–2652. IEEE, 2017.
    [159] Xiaomei Zheng, Dongyang Li, LeiWang, Lin Shen, Yanyuan Gao, and Yuanyuan
    Zhu. An automatic composition model of chinese folk music. In AIP Conference
    Proceedings, volume 1820, page 080003. AIP Publishing, 2017.
    [160] Jing Luo, Xinyu Yang, Shulei Ji, and Juan Li. Mg-vae: Deep chinese folk songs
    generation with specific regional styles. In Proceedings of the 7th Conference on
    Sound and Music Technology (CSMT), pages 93–106. Springer, 2020.
    [161] Ender O¨ zcan and Tu¨rker Erc¸al. A genetic algorithm for generating improvised
    music. In International Conference on Artificial Evolution (Evolution Artificielle),
    pages 266–277. Springer, 2007.
    [162] Sanjay Majumder and Benjamin D Smith. Music recombination using a genetic
    algorithm. In International Computer Music Conference (ICMC). ICMA, 2018.
    [163] Manuel Alfonseca, Manuel Cebri´an Ramos, and Alfonso Ortega. Testing genetic
    algorithm, recombination strategies and the normalized compression distance for
    computer-generated music. In 5th WSEAS Int. Conf. on Artificial Intelligence,
    Knowledge Engineering and Data Bases (AIKED 2006). World Scientific and
    Engineering Academy and Society (WSEAS), 2006.
    [164] Fernando H Calderon Alvarado, Wan-Hsuan Lee, Yen-Hao Huang, and Yi-Shin
    Chen. Melody similarity and tempo diversity as evolutionary factors for music
    variations by genetic algorithms. In ICCC, pages 251–254, 2020.

    QR CODE