簡易檢索 / 詳目顯示

研究生: 鍾仁傑
Chung Ren-Jei
論文名稱: 以溶膠-凝膠法製備含鋅及銀之氫氧基磷灰石與其抗菌性質研究
Silver or Zinc doped hydroapatite synthesized by sol-gel route and the evaluation of anti-bacterial tests in vitro
指導教授: 金重勳
Chin Tsung-Shune
周鳳英
Chou Fong-In
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 118
中文關鍵詞: 氫氧基磷灰石抗菌轉醣鏈球菌
外文關鍵詞: hydroxyapatite, anti-bacterial, silver, zinc, Streptococcus mutans
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    氫氧基磷灰石為人體骨骼中礦物質的主要成份,具有良好的生物適應性、無細胞毒性、且可與骨頭形成良好的鍵結等優點,因此廣泛地被研究與使用,具抗菌性質之生醫材料可延伸其保存期限與應用,並可預防患部之感染。合成氫氧基磷灰石的方法包括有化學共沉法、固態反應法、水熱法、溶膠-凝膠法(sol-gel route)。

    本研究係利用溶膠-凝膠法合成氫氧基磷灰石,並以銀或鋅作為添加,研究其合成機制與最佳條件。材料抗菌試驗所用菌株為Streptococcus mutans(ATCC 25175),係造成牙菌斑及齟齒之主要菌株。

    在溶膠-凝膠法合成氫氧基磷灰石之研究中,實驗結果顯示以硝酸鈣與TEP作為鈣與磷之來源,以酒精為溶劑者經80℃、16小時的時效,80℃、48小時膠化乾燥,350℃以上煆燒即可得到氫氧基磷灰石,以Methoxy ethanol為溶劑者則需650℃以上之煆燒才可得到氫氧基磷灰石。時效過程之主要反應機制為TEP的水解與前趨物的重新排列。550℃以上的煆燒會有氧化鈣的生成,膠體熱性質分析配合XRD的結果可得知中間產物的生成並推知氧化鈣生成之機制。20000ppm以下的銀或鋅添加之樣品經煆燒後,均可得到氫氧基磷灰石之生成,而Ag:Ca=2:9者可得到無法從JCPD中對照之新相。所得樣品經ICP-AES測試後求得之鈣磷比較氫氧基磷灰石之理想值低。

    Streptococcus mutans菌株係於37℃下靜置培養,在BHIA(brain heart infusionagar)平板培養基上菌落間會有相互抑制現象,菌落半徑可由0.1mm~4mm。在BHI液態培養基中繁殖一代須2小時,最高菌數可達109CFU/mL,於4℃下可保存三個月。添加銀20000ppm及添加鋅2000ppm之樣品於BHI培養液中不會有明顯銀或鋅之釋出,且在液態培養基中不會釋出物質抑制菌生長。Streptococcus mutans菌體不會趨離氫氧基磷灰石生長,而菌體不會趨向添加銀20000ppm及添加鋅2000ppm之樣品生長。將添加銀20000ppm以上,及鋅2000ppm以上之材料置於固體培養基可明顯看到菌體抑制圈。


    Abstract
    Hydroxyapatite (HA) is the major component of the inorganic part in bone. Because HA has the advantages, such as excellent bio-compatibility, free of cell toxicity, and form strong bonding to bone, it has been widely studied and used. Biomaterials with anti-bacterial property will extend reservation period and applications, and will help to prevent the infection of injured. There are many methods used to synthesize HA, including chemical precipitation, solid state reaction, hydrothermal synthesis, sol-gel route, and so on. In this study, sol-gel route was applied to synthesize HA, with addition of silver or zinc ions. Synthetic mechanisms and optimal processing parameters (conditions) were investigated. Streptococcus mutans (ATCC 25175), an etiological agent of human caries and plaques, was applied in the anti-bacterial in vitro tests.

    In the study of synthesis of HA by sol-gel route, results showed that when Ca(NO3)2 and TEP were used as sources of calcium and phosphorus respectively, alcohol as solvent, 16 hours aging under at 80℃, 24 hours gelation and dried under 80℃, then calcined above 350℃ will lead to HA phase. When 2-methoxy ethanol is used as the solvent the calcination has to be above 650℃ to obtain HA. The major mechanisms of aging are the hydrolysis of TEP and the rearrangements of precursor. CaO impurity would be produced after samples being calcined above 550℃. Comparing the TG/DTA and XRD data lead to the formation mechanisms of intermediates and CaO. HA would be produced for samples added with silver or zinc below 20000ppm. The one with Ag:Ca=2:9 would result in a new phase that could out be indexed in existing JCPD cards. The ICP-AES data of obtained HA samples showed a lower value of Ca/P than the ideal HA.

    Streptococcus mutans was cultured at 37℃. When they were cultured on BHIA (brain heart infusion agar) medium the colonies showed inhibiting effects to each other. The radius of colonies ranged from 0.1mm to 4mm. In BHI medium, the doubling time was 2 hours, the maximum cell concentrations reached 109 CFU/mL. Streptococcus mutans can be preserved for tree months under 4℃. In BHI medium, sample C (20000ppm silver added) and sample F (zinc 2000ppm added) would not release silver or zinc ions obviously, and would not inhibit the growth of cells. Streptococcus mutans would reject to grow on samples C and F, but not for HA. Anti-bacterial circles can be seen when these samples (above 20000ppm silver or 2000ppm zinc) were put on BHIA medium.

    目 錄 中文摘要 英文摘要 致謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 前言 1.2 生醫材料與生醫陶瓷 1.3 生醫用氫氧基磷灰石 1.4 研究目的 第二章 文 獻 回 顧 2.1 氫氧基磷灰石之生物適應性及其基本性質 2.2 氫氧基磷灰石之合成方法 2.3 溶膠-凝膠法及其主要影響因素 2.4 元素添加及取代對氫氧基磷灰石的影響 2.5 齟齒的成因及其預防 2.6 Streptococcus mutans的特性與培養 2.7 常用滅菌法簡介與微生物生長研究方法 2.8 微生物生長研究方法 第三章 實 驗 方 法 與 步 驟 3.1 實驗流程 3.2 藥品 3.3 儀器 3.4 溶膠-凝膠法配製粉末 3.4.1 起始溶液的配製與元素配比 3.4.2 溶膠時效處理 3.4.3 溶膠乾燥膠化 3.4.4 凝膠煆燒 3.5 膠體質差/熱差(TG/DTA)差分析 3.6 粉末及膠體性質分析 3.6.1 X光繞射分析 3.6.2 掃描式電子顯微鏡 3.6.3 鈣、磷及添加元素原子比例分析 3.7 Streptococcus mutans菌株培養與觀察 3.7.1 培養基及磷酸緩衝液的配製 3.7.1.1 液態培養基 3.7.1.2 固態培養基 3.7.1.3 磷酸緩衝液 3.7.2 菌株的保存 3.7.2.1固態培養基斜面培養後凍藏保存 3.7.2.2 甘油冷凍保存 3.7.3 Streptococcus mutans菌株培養與觀察 3.8材料離子釋出測試 3.9材料抗菌環觀察 3.10 材料抑菌性質觀察 第四章 結 果 與 討 論 4.1 Sol-gel法合成氫氧基磷灰石及其添加研究 4.1.1 氫氧基磷灰石之合成 4.1.1.1 膠體質差/熱差(TG/DTA)差分析結果 4.1.1.2 不同溶劑之影響 4.1.1.3 時效溫度之影響 4.1.1.4 酸催化之影響 4.1.1.5 不同煆燒溫度之結果 4.1.1.6 煆燒後粉末之微結構觀察 4.1.2 銀添加氫氧基磷灰石之合成 4.1.2.1 膠體質差/熱差(TG/DTA)差分析結果 4.1.2.2 時效溫度之影響 4.1.2.3 不同煆燒溫度之結果 4.1.2.4 銀添加比例之影響 4.1.3 鋅添加氫氧基磷灰石之合成 4.1.3.1 膠體質差/熱差(TG/DTA)差分析結果 4.1.3.2 時效溫度之影響 4.1.3.3 不同煆燒溫度之結果 4.1.3.4 鋅添加比例之影響 4.1.4 ICP-AES結果分析 4.2 Streptococcus mutans培養 4.2.1 Streptococcus mutans形態觀察 4.2.2 平板計數法測定Streptococcus mutans生長曲線 4.2.3 混濁度法 4.2.4 固態培養基斜面及甘油保存 4.3 材料抑菌測試 4.3.1 固態培養基抑菌環觀察 4.3.2 材料離子釋出測試 4.3.3 液態培養基中材料抑菌測試 第五章 結 論 未來工作 參考文獻

    參考文獻
    第一章
    1. 洪炳南, 醫學工程, 第四卷, 第一期, 1984, 23-31.
    2. 闕山樟, "骨科植入物生醫材料及器材", 科儀新知, 13, 1, 64-71.
    3. AH Melcher, Summary of biological considerations, J. Dent. Educ., 52, 812, 1988.
    4. 林峰輝, "鈉鈣矽磷生醫骨科玻璃陶瓷之研究", 成功大學礦冶及材料科學研究所博士論文, 1989.
    5. L.L. Hench, "Bioceramics: from concept to clinic", J. Am. Ceram. Soc., 74, 1487, 1991.
    6. 周更生, "生物陶瓷", 尖端科技, 29-38, 1985.
    7. P. Vincenzini, "Ceramics in surgery", Elsevier Sci. Publishing Comp., Amsterdam, 1983.
    8. K. de Groot, "Bioceramics of calcium phosphate", CRC Press. Inc., Bocaa Ration, Florida, 1983.
    9. J. B. Park, "Biomaterials: An introduction", Plenum Press New York and London, 1984.
    10. S.F. Hulbert, J.C. Bokros, L.L. Hench, J.W. Wilson and G. Heimke, "Ceramics in Clinical Applications, Past, Present And Future", Ceramics in Clinical Application, Ed. by P. Vincenzini, Elsevier Science Publishers B. V., 3-27, 1987.
    11. F.J McClure, Fluorine, "Ash, calcium, and phosphorus in human teeth", J. Dent. Res., 29, 315, 1950.
    12. H. Aoki, "Medical application of hydroxyapatite", Ishiyaku Euro America, Inc. Tokyo. St. Louis, Takayama Press, 1994.
    13. M. Jacho, "Calcium phosphate ceramics as hard tissue prosthetics", Clin. Orthop. Rel. Res, 157, 259, 1981.
    14. K. de Groot, "Medical applications of calcium phosphate bioceramics ", 日本協會學術論文誌, 99, 943-953, 1991.
    15. A.C. Tas, F. Korkusuz, M. Timicin, N. Akkas, "An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics.", J. Mater. Sci. Mater. Med., 8, 2, 91, 1997.
    16. S.H. Rhee, J. Tanaka, "Hydroxyapatite coating on a collagen membrane by a miomimetic method.", J. Amer. Ceram. Soc., 81, 11, 3029, 1998.
    17. R.R. Ramachandra, H.N. Roopa, T.S. Kannan, "Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders.", J. Mater. Sci. Mater. Med., 8, 511, 1997.
    18. H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, "Hydroxyapatite synthesized by a simplified hydrothermal method.", Ceram. Int., 23, 1, 19, 1997.
    19. P. Layrolle, A. Ito, T. Tateishi, "Sol-gel synthsis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics.", J. Amer. Ceram. Soc., 81, 6, 1421, 1998.
    20. A. Jillavenkatesa, R.A. Condrate, "Sol-gel processing of hydroxyapatite.", J. Mater. Sci., 33, 16, 4111, 1998.
    21. C.M. Lopatin, V. Pizziconi, T.L. Alford, T. Laursen, "Hydroxyapatite powders and thin films prepared by a sol-gel technique.", Thin Solid Films, 326, 1-2, 227, 1998.
    22. J.S. Sun, H.C. Liu, Walter H.S Chang, J. Li, F.H. Lin, H.C. Tai, "The influence of hydroxyapatite particle size on bone cell activities: an in vitro study", J. Biomed. Mater. Res., 39, 390, 1998.
    23. M. Mattioli Belmonte, A. de Benedittis, R.A.A. Muzzarelli, M.G. Gandolfi, C. Zucchini, A. Krajewski, A. Ravaglioli, E. Roncari, M. Fini, R. Giardino, "Bioactivity modulation of bioactive materials in view of their application in osteoporotic patients", J. Mater. Sci. Mater. Med., 9, 485, 1998.
    24. A. Lopez-Macipe, J. Homez-Morales, R. Rodriguez-Clemente, "Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating", Adv. Mater., 10, 49, 1998.
    第二章
    25. J.S. Sun, H.C. Liu, Walter H.S Chang, J. Li, F.H. Lin, H.C. Tai, "The influence of hydroxyapatite particle size on bone cell activities: an in vitro study", J. Biomed. Mater. Res., 39, 390, 1998.
    26. M. Mattioli Belmonte, A. de Benedittis, R.A.A. Muzzarelli, M.G. Gandolfi, C. Zucchini, A. Krajewski, A. Ravaglioli, E. Roncari, M. Fini, R. Giardino, "Bioactivity modulation of bioactive materials in view of their application in osteoporotic patients", J. Mater. Sci. Mater. Med., 9, 485, 1998.
    27 K. de Groot, "Bioceramics of Calcium Phosphate", CRC Press, Inc., Florida, 1983.
    28. Michael Jarcho, Clinical Orthopaedics and Related Research, No.157, 259, 1981.
    29. "Hydroxylapatite" Intermdics Orthopedics Inc., January, 1982.
    30. Diorio, Acta Cryst. 11, 1958, 308.
    31. Suyoshi Kijima, Masayuki Tsutsumi, J. of American Ceramic Society-Uerweij, Vol.62, No.9-10, 455, 1979.
    32. T. Negas and R. S. Roth, Journal of Research of the National Bureau of Standards-A. Physics and chemistry, Vol.72A, No.6, 783, 1968.
    33. H. Newesely and J. F. Osborn, Mechanical Properties of Biomaterials, Edited by G. W. Hastings and D. F. Williams, John Wiley & Sons Ltd., 465, 1980.
    34. I. Key, R. A. Young, and A. S. Posner, Nature, 1050, 1964.
    35. E. J. Duff and A. A. Grant., Mechanical Properties of Biomaterials, Edited by G. W. Hastings and D. F. Williams, John Wiley & Sons Ltd., 465, 1980.
    36. A.C. Tas, F. Korkusuz, M. Timicin, N. Akkas, "An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics.", J. Mater. Sci. Mater. Med., 8, 2, 91, 1997.
    37. S.H. Rhee, J. Tanaka, "Hydroxyapatite coating on a collagen membrane by a miomimetic method.", J. Amer. Ceram. Soc., 81, 11, 3029, 1998.
    38. R.R. Ramachandra, H.N. Roopa, T.S. Kannan, "Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders.", J. Mater. Sci. Mater. Med., 8, 511, 1997.
    39. H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, "Hydroxyapatite synthesized by a simplified hydrothermal method.", Ceram. Int., 23, 1, 19, 1997.
    40. C. Jeffrey Brinker and George W. Scherer, "Sol-gel Science", Academic Press, Inc., 1990.
    41. M. J. Root, "Inhibition of the amorphous calcium phosphate transformation reaction by polyphosphonates and metal ions", Calcif. Tissue Int., 47, 112, 1990.
    42. Y. Okamoto and S. Hidaka, "Studies on calcium phosphate precipitation : Effects of metal ions used in dental materials", J. Biomed. Mater. Res., 28, 1403, 1994.
    43. A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano and N. Rovri, "Inhibiting effect of Zinc on hydroxyapatite crystallization", J. Inorg. Biochem., 58, 49, 1995.
    44. N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi and A. Ito, "Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face", J. Phys. Chem. B, 104, 4189, 2000.
    45. T. N. Kim, Q. L. Feng, J. O. Kim, J. Wu, H. Wang, G. C. Chen, F. Z. Chi, "Antimicrobial effects of metal ions (Ag+、Cu2+、Zn2+)in hydroxyapatite", J. Mater. Sci. Mater. Med., 9, 129, 1998.
    46. Q. L. Feng, T. N. Kim, J. Wu, E. S. Park, J. O. Kim, D. Y. Lim and F. Z. Cui, "Antibacterial effects of Ag-Hap thin film on alumina substrates", Thin Solid Film, 335, 214, 1998.
    47. M. Kawashita, S. Tsuneyama, F. Miyaji, T. Kokubo, H. Kozuka and K. Yamamoyo, "Antibacterial silver-containing silica glass prepared by so-gel method", Biomater., 21, 393, 2000.
    48. A. Ito, K. Ojima, H. Naito, N. Ichinose and T. Tateishi, "Preparation, solubility, and cytocompatibility od zinc-releasing calcium phosphate ceramics", J. Biomed. Mater. Res., 50, 178, 2000.
    49. H. Kawamura, A. Ito, S. Miyakawa, P. Layrolle, K. Ojima, N. Ichinose, T. Tateishi, "Stimulatory effect of zinc-releasing calcium phosphate implane on bone formation in rabbit femora", J. Biomed. Mater. Res., 50, 184, 2000.
    50. Baljit S. Moonga and David W. Dempster, "Zinc is a potent inhibitor of osteocalstic bone resorption in vitro", J. Bone Miner. Res., 10, 3, 453, 1995.
    51. Lehner T., Immunology of Oral Disease, Chap.2, 3, 4, 6, Blackwell Sci. Publication, 1992.
    52. Rosen S., Dental caries. In "Essential dental microbiology" (Willett N. P., White R. R. and Rosen S. eds.)Prentice-Hall Int. Inc., 341, 1991.
    53. Rogers A. H., Immunization against dental caries, A review. Aust. Dent. J. 27, 81, 1982.
    54. Murata M., Nakajima Y. and Homma S., "Inhibition of Cariogenic Glucan Synthesis by Dark Beer", Lebens. Wissen. Technol. 28, 201, 1995.
    55. Fukushina K., Izawa K., Masada M., Oogu K., Namiki Y., Okada T., Ozaki J. Tamura, G. and Ikeda T., Inhibitory effects of a fermented "Makomo" leaf extract on insoluble-glucan synthesis by serotype c Streptococcus mutans glucosyltransferase, Biosci. Biotechnol. Biochem. 57, 672, 1993.
    56. Baginska J. and Szczukowiski K., "Studies of the decomposition of calcium nitrate and nitrite in nitrogen and nitrogen dioxide atmosphere, Zesz. Nauk. Politech. Slask. Chem., 141, 1986.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE