簡易檢索 / 詳目顯示

研究生: 鄭淳陽
Cheng, Chun-Yang
論文名稱: 優良熱穩定性之非晶質高熵合金薄膜開發
Development of amorphous high-entropy alloy thin films with excellent thermal stability
指導教授: 葉均蔚
Yeh, Jien-Wei
口試委員: 李勝隆
Lee, Sheng-Long
洪健龍
Horng, Jain-Long
曹春暉
Tsau, Chun-Huei
蔡哲瑋
Tsai, Che-Wei
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 155
中文關鍵詞: 高熵合金非晶質薄膜濺鍍金屬熱穩定性機械性質電子性質電阻溫度係數硬度
外文關鍵詞: high-entropy alloy, amorphous, thin film, sputtering, metal, thermal stability, mechanical property, electrical property, temperature coefficient of resistivity, hardness
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用高熵合金的核心效應設計非晶質高熵合金薄膜,以期具有優良的熱穩定性。這些成功開發出合金系統有Ge0.5NbTaTiZr、GeNbTaTiZr、BNbTaTiZr與SiNbTaTiZr,其非晶結構分別在700 °C、750 °C、800 °C與850 °C下進行 1小時的真空退火後仍能維持。對如此傑出熱穩定性的成因,本研究以高混合熵(熱力學因素),顯著的原子尺寸差異(拓樸學因素)與遲緩擴散效應(動力學因素)加以討論。此外,有較低混合熵與原子尺寸差異的四元等莫耳NbTaTiZr亦被開發作為對照組,用以與前述五元薄膜比較熱穩定性。
    因為非晶薄膜在一些特殊環境應用時會考量到機械性質與電性,本研究也對設計之四元與五元薄膜量測並分析這兩項特性。例如在冷熱環境中需要應用高電阻合金的狀況下,合金需具有低的電阻溫度係數。與傳統非晶質合金薄膜的硬度比較,本研究中四元合金薄膜的硬度可謂與其旗鼓相當,而五元合金薄膜的硬度則較高。所有設計的非晶高熵合金薄膜都有高電阻與小且負的電阻溫度係數。由上述結果可知,本研究開發之非晶質高熵合金薄膜擁有很大的應用潛力。這些結果也進一步闡明所使用的設計策略十分有效。


    Core effects of high entropy alloys (HEAs) are utilized to design high entropy alloy thin films (HEATFs) with excellent thermal stability of amorphous structures. These HEATFs are Ge0.5NbTaTiZr, GeNbTaTiZr, BNbTaTiZr and SiNbTaTiZr. After one hour annealing in high vacuum condition, the highest experimental temperature at which their amorphous structure retained are 700 oC, 750 oC, 800 oC and 850 oC, respectively. Thermodynamic, topological and kinetic factors governing outstanding thermal stability of quinary HEATFs, are discussed via high entropy effect, atomic size differences and sluggish diffusion phenomena. By contrast, we set quaternary equiatomic NbTaTiZr alloy film as a reference, in which high entropy and atomic size difference are lesser than aforementioned quinary HEATFs, so as to compare and discuss their thermal stability.
    Since mechanical and electrical properties of amorphous thin films are often important in special applications (e.g. high resistivity and low temperature coefficient of resistivity (TCR) for cold and hot environments), mechanical and electrical properties of quaternary and quinary HEATFs were investigated. As compared to the hardness of conventional amorphous metal thin films, those of quaternary and quinary HEATFs are comparable and higher, respectively. All HEATFs display high resistivities and small negative temperature coefficients of resistivity. In summary, these results verify that the design strategy is valid and further demonstrates that the designed HEATFs are potential for special application.

    誌 謝 2 摘 要 3 Abstract 4 目 錄 6 圖目錄 12 表目錄 23 壹、前 言 25 貳、文獻回顧 26 2.1 非晶質合金 26 2.1.1 非晶質材料簡介 26 2.1.2 塊狀金屬玻璃的發展 28 2.1.3 塊狀金屬玻璃的性質與應用 31 2.1.4 玻璃形成能力 33 2.1.5 非晶質金屬薄膜 38 2.2 高熵合金 39 2.2.1 緣起 39 2.2.2 廣義的定義說明 40 2.2.3 高熵效應 (High Entropy Effect) 45 2.2.4 遲緩擴散效應 (Sluggish Diffusion Effect) 45 2.2.5 嚴重晶格扭曲效應 (Severe Lattice Distortion Effect) 49 2.2.6 雞尾酒複合效應 (Cocktail Effect) 50 2.3 薄膜 53 2.3.1 物理氣相沉積法 53 2.3.2 濺鍍技術 54 2.3.3 反應式濺鍍 56 2.3.4 磁控濺鍍 56 2.3.5 薄膜成長與結構 60 參、實驗流程 67 3.1 合金設計 67 3.2 靶材製作 71 3.3 薄膜鍍製 72 3.4 真空退火實驗 74 3.5 靶材與薄膜之成份分析 76 3.6 薄膜結構分析 78 3.7 機械性質分析 79 3.8 電阻率量測 79 肆、結果與討論 81 4.1 NbTaTiZr薄膜 81 4.1.1 晶體結構分析 81 4.1.2 微結構觀察 83 4.1.3 硬度與彈性模數 88 4.1.4 電阻率與電阻溫度係數 88 4.2 BNbTaTiZr薄膜 90 4.2.1 晶體結構分析 90 4.2.2 微結構觀察 92 4.2.3 硬度與彈性模數 97 4.2.4 電阻率與電阻溫度係數 97 4.3 SiNbTaTiZr薄膜 99 4.3.1 晶體結構分析 99 4.3.2 微結構觀察 101 4.3.3 硬度與彈性模數 106 4.3.4 電阻率與電阻溫度係數 106 4.4 GexNbTaTiZr (x = 0.5, 1) 薄膜 108 4.4.1 晶體結構分析 108 4.4.2 微結構觀察 111 4.4.3 硬度與彈性模數 121 4.4.4 電阻率與電阻溫度係數 122 4.5 綜合討論 125 4.5.1 非晶質高熵合金薄膜之熱穩定性差異 125 4.5.2 非晶質結構之優越熱穩定性 127 4.5.3 平均表面粗糙度 (Average Surface Roughness) 135 4.5.4 硬度與彈性模數 137 4.5.5 電阻率與電阻溫度係數 145 伍、結論 149 陸、貢獻 151 柒、未來建議工作 152 參考文獻 153

    [1] Kim HY, Mizutani M, Miyazaki S. Acta Mater. 2009;57:1920-30.
    [2] Ma LQ, Wang LM, Zhang T, Inoue A. Mater Trans. 2002;43:2357-9.
    [3] Chen PS, Chen HW, Duh JG, Lee JW, Jang JSC. Surf Coat Technol. 2013;231:332-6.
    [4] Kramer J. Ann Phys-Berlin. 1934;19:37-64.
    [5] Kramer J. Z Phys. 1937;106:675-91.
    [6] Klement W, Willens RH, Duwez P. Nature. 1960;187:869-70.
    [7] Chen HS, Miller CE. Rev Sci Instrum. 1970;41:1237-8.
    [8] Liebermann HH, Graham CD. IEEE Trans Magn. 1976;12:921-3.
    [9] Narasimhan MC. United States Patent. United States1979.
    [10] Kui HW, Greer AL, Turnbull D. Appl Phys Lett. 1984;45:615-6.
    [11] Inoue A, Zhang T, Masumoto T. Mater Trans JIM. 1990;31:425-8.
    [12] Inoue A, Kato A, Zhang T, Kim SG, Masumoto T. Mater Trans JIM. 1991;32:609-16.
    [13] Peker A, Johnson WL. Appl Phys Lett. 1993;63:2342-4.
    [14] Inoue A. Prog Mater Sci. 1998;43:365-520.
    [15] Inoue A, Makino A, Mizushima T. J Magn Magn Mater. 2000;215:246-52.
    [16] Inoue A. Acta Mater. 2000;48:279-306.
    [17] Waniuk TA, Schroers J, Johnson WL. Appl Phys Lett. 2001;78:1213-5.
    [18] Schroers J, Johnson WL. Appl Phys Lett. 2004;84:3666-8.
    [19] Shen BL, Chang CT, Inoue A. Appl Phys Lett. 2006;88:3.
    [20] Wang WH. Prog Mater Sci. 2007;52:540-96.
    [21] Li R, Yang Q, Pang SJ, Ma CL, Zhang T. J Alloy Compd. 2008;450:181-4.
    [22] Meng D, Yi J, Zhao DQ, Ding DW, Bai HY, Pan MX, et al. J Non-Cryst Solids. 2011;357:1787-90.
    [23] Lu YZ, Huang YJ, Wei XS, Shen J. Intermetallics. 2012;30:144-7.
    [24] Löffler JF. Intermetallics. 2003;11:529-40.
    [25] Inoue A, Takeuchi A. Acta Mater. 2011;59:2243-67.
    [26] Zhang T, Inoue A. Mater Trans JIM. 1998;39:857-62.
    [27] Ishida M, Takeda H, Nishiyama N, Kita K, Shimizu Y, Saotome Y, et al. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2007;449:149-54.
    [28] Nishiyama N, Ishida M, Togashi N, Inoue A. Rev Adv Mater Sci. 2008;18:89-92.
    [29] Joo SH, Pi DH, Guo J, Kato H, Lee S, Kim HS. Met Mater-Int. 2016;22:383-90.
    [30] Suryanarayana C, Inoue A. Bulk Metallic Glasses. Boca Raton: CRC Press Taylor and Francis Group; 2011.
    [31] Inoue A. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2001;304:1-10.
    [32] Tam MK, Pang SJ, Shek CH. J Non-Cryst Solids. 2007;353:3596-9.
    [33] Lin HM, Wu JK, Wang CC, Lee PY. Mater Lett. 2008;62:2995-8.
    [34] Souza CAC, Ribeiro DV, Kiminami CS. J Non-Cryst Solids. 2016;442:56-66.
    [35] Nie XP, Xu XM, Jiang QK, Chen LY, Xu Y, Fang YZ, et al. J Non-Cryst Solids. 2009;355:203-7.
    [36] Bozorth RM. Ferromagnetism. Princeton: D. Van Nostrand Co.; 1951.
    [37] Greer AL. Nature. 1993;366:303-4.
    [38] Reed-Hill RE, Abbaschian R. Physical Metallurgy Principles. 3rd ed. Boston: PWS Publishing Company; 1994.
    [39] Inoue A. Mater Trans JIM. 1995;36:866-75.
    [40] Turnbull D. Contemp Phys. 1969;10:473-88.
    [41] Lu ZP, Tan H, Li Y, Ng SC. Scr Mater. 2000;42:667-73.
    [42] Lu ZP, Liu CT. Acta Mater. 2002;50:3501-12.
    [43] Mondal K, Murty BS. J Non-Cryst Solids. 2005;351:1366-71.
    [44] Chen QJ, Shen J, Zhang DL, Fan HB, Sun J, McCartney DG. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2006;433:155-60.
    [45] Long ZL, Wei HQ, Ding YH, Zhang P, Xie GQ, Inoue A. J Alloy Compd. 2009;475:207-19.
    [46] Guo S, Liu CT. Intermetallics. 2010;18:2065-8.
    [47] Chu JP, Jang JSC, Huang JC, Chou HS, Yang Y, Ye JC, et al. Thin Solid Films. 2012;520:5097-122.
    [48] Deng YL, Lee JW, Lou BS, Duh JG, Chu JP, Jang JSC. Surf Coat Technol. 2014;259:115-22.
    [49] Chen LT, Lee JW, Yang YC, Lou BS, Li CL, Chu JP. Surf Coat Technol. 2014;260:46-55.
    [50] Tregilgas J. Adv Mater Process. 2005;163:46-9.
    [51] Hata S, Sakurai J, Shimokohbe A, Ieee. Thin film metallic glasses as new mems materials. MEMS 2005 Miami: Technical Digest. New York: Ieee; 2005. p. 479-82.
    [52] Miller CW, Li ZP, Akerman J, Schuller IK. Appl Phys Lett. 2007;90:043513.
    [53] Nicolet MA. Thin Solid Films. 1978;52:415-43.
    [54] Wittmer M. J Vac Sci Technol A-Vac Surf Films. 1984;2:273-80.
    [55] Chang SY, Wang CY, Chen MK, Li CE. J Alloy Compd. 2011;509:L85-L9.
    [56] Sims CT, Hagel WC. The Superalloys. New York: John Wiley & Sons, Inc.; 1972.
    [57] Committee H. Metals Handbook, Properties and Selection: Irons, Steels, and High Performance Alloys. Ohio: ASM international, Materials Park; 1990.
    [58] Committee H. Metals Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Ohio: ASM international, Materials Park; 1990.
    [59] Li JCM. Microstructure and Properties of Materials. New Jersey: World Scientific Publishing Co. Pte. Ltd.; 1996.
    [60] Li JCM. Microstructure and Properties of Materials. New Jersey: World Scientific Publishing Co. Pte. Ltd.,; 2000.
    [61] Westbrook JH, Fleischer RL. Structural Applications of Intermetallic Compounds. New York: John Wiley & Sons Inc.; 2000.
    [62] Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, et al. Adv Eng Mater. 2004;6:299-303.
    [63] Yeh JW. Ann Chim-Sci Mat. 2006;31:633-48.
    [64] Yeh JW. JOM. 2013;65:1759-71.
    [65] Murty BS, Yeh JW, Ranganathan S. High-Entropy Alloys. Boston: Butterworth-Heinemann; 2014.
    [66] Tsai MH, Yeh JW. Mater Res Lett. 2014;2:107-23.
    [67] Lim X. Nature. 2016;533:306-7.
    [68] Swalin RA. Thermodynamics of Solid. 2nd ed. New York: Wiley; 1972.
    [69] Fultz B. Prog Mater Sci. 2010;55:247-352.
    [70] Yeh JW, Chen SK, Gan JY, Lin SJ, Chin TS, Shun TT, et al. Metall Mater Trans A-Phys Metall Mater Sci. 2004;35A:2533-6.
    [71] Tong CJ, Chen YL, Chen SK, Yeh JW, Shun TT, Tsau CH, et al. Metall Mater Trans A-Phys Metall Mater Sci. 2005;36A:881-93.
    [72] Yeh JW, Chang SY, Hong YD, Chen SK, Lin SJ. Mater Chem Phys. 2007;103:41-6.
    [73] Gao MC, Alman DE. Entropy. 2013;15:4504-19.
    [74] Hsu CY, Yeh JW, Chen SK, Shun TT. Metall Mater Trans A-Phys Metall Mater Sci. 2004;35A:1465-9.
    [75] Liu CM, Wang HM, Zhang SQ, Tang HB, Zhang AL. J Alloy Compd. 2014;583:162-9.
    [76] Tsai KY, Tsai MH, Yeh JW. Acta Mater. 2013;61:4887-97.
    [77] Tsai CW, Chen YL, Tsai MH, Yeh JW, Shun TT, Chen SK. J Alloy Compd. 2009;486:427-35.
    [78] Shun TT, Hung CH, Lee CF. J Alloy Compd. 2010;493:105-9.
    [79] Huang PK, Yeh JW. Scr Mater. 2010;62:105-8.
    [80] Hsu CY, Juan CC, Wang WR, Sheu TS, Yeh JW, Chen SK. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2011;528:3581-8.
    [81] Senkov ON, Wilks GB, Scott JM, Miracle DB. Intermetallics. 2011;19:698-706.
    [82] Juan CC, Hsu CY, Tsai CW, Wang WR, Sheu TS, Yeh JW, et al. Intermetallics. 2013;32:401-7.
    [83] Liu WH, Wu Y, He JY, Nieh TG, Lu ZP. Scr Mater. 2013;68:526-9.
    [84] Juan CC, Tsai MH, Tsai CW, Hsu WL, Lin CW, Chen SK, et al. Mater Lett. 2016;184:200-3.
    [85] Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK. Intermetallics. 2010;18:1758-65.
    [86] Chou HP, Chang YS, Chen SK, Yeh JW. Mater Sci Eng B-Adv Funct Solid-State Mater. 2009;163:184-9.
    [87] Kao YF, Chen SK, Chen TJ, Chu PC, Yeh JW, Lin SJ. J Alloy Compd. 2011;509:1607-14.
    [88] Lu CL, Lu SY, Yeh JW, Hsu WK. J Appl Crystallogr. 2013;46:736-9.
    [89] Ranganathan S. Curr Sci. 2003;85:1404-6.
    [90] Senkov ON, Senkova SV, Woodward C, Miracle DB. Acta Mater. 2013;61:1545-57.
    [91] Lin CM, Juan CC, Chang CH, Tsai CW, Yeh JW. J Alloy Compd. 2015;624:100-7.
    [92] Shen WJ, Tsai MH, Tsai KY, Juan CC, Tsai CW, Yeh JW, et al. J Electrochem Soc. 2013;160:C531-C5.
    [93] Chen YY, Hong UT, Yeh JW, Shih HC. Scr Mater. 2006;54:1997-2001.
    [94] Wu WH, Yang CC, Yeh JW. Ann Chim-Sci Mat. 2006;31:737-47.
    [95] Kao YF, Chen SK, Sheu JH, Lin JT, Lin WE, Yeh JW, et al. Int J Hydrog Energy. 2010;35:9046-59.
    [96] Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh JW. Acta Mater. 2011;59:6308-17.
    [97] Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. Science. 2014;345:1153-8.
    [98] Juan CC, Tseng KK, Hsu WL, Tsai MH, Tsai CW, Lin CM, et al. Mater Lett. 2016;175:284-7.
    [99] Cheng KH, Lai CH, Lin SJ, Yeh JW. Ann Chim-Sci Mat. 2006;31:723-36.
    [100] Tsai MH, Wang CW, Lai CH, Yeh JW, Gan JY. Appl Phys Lett. 2008;92.
    [101] Shen WJ, Tsai MH, Yeh JW. Coatings. 2015;5:312-25.
    [102] Lin PC, Cheng CY, Yeh JW, Chin TS. Entropy. 2016;18:308.
    [103] Hsu WL, Murakami H, Yeh JW, Yeh AC, Shimoda K. J Electrochem Soc. 2016;163:C752-C8.
    [104] Mattox DM. Met Finish. 2002;100:394-408.
    [105] Grove WR. Phil Trans R Soc Lond. 1852;142:87-101.
    [106] Guo HP, Zhang J, Li FZ, Liu Y, Yin JJ, Zhou YC. J Eur Ceram Soc. 2008;28:2099-107.
    [107] Walton SG, Greene JE. Chapter 2 - Plasmas in Deposition Processes. In: Martin PM, editor. Handbook of Deposition Technologies for Films and Coatings. 3rd ed. Boston: William Andrew Publishing; 2010. p. 32-92.
    [108] Mattox DM. J Vac Sci Technol, A. 1989;7:1105-14.
    [109] Vossen JL, Kern W. Thin Film Processes II. New York: Academic Press; 1991.
    [110] Kelly PJ, Arnell RD. Vacuum. 2000;56:159-72.
    [111] Venables JA, Spiller GDT, Hanbucken M. Rep Prog Phys. 1984;47:399-459.
    [112] Thornton JA. Annu Rev Mater Sci. 1977;7:239-60.
    [113] Movchan BA, Demchishin AV. Phys Met Metall. 1969;28:83-90.
    [114] Thornton JA. J Vac Sci Technol. 1974;11:666-70.
    [115] Messier R, Giri AP, Roy RA. J Vac Sci Technol, A. 1984;2:500-3.
    [116] Pauleau Y, Barna PB, Péter B. Protective Coatings and Thin Films: Synthesis, Characterization and Applications. The Netherlands: Kluwer Academic Publishers; 1997.
    [117] Committee H. Properties of Pure Metals. Properties and Selections: Nonferrous Alloys and Pure Metals. 9th ed. Ohio: ASM international, Materials Park; 1986. p. 714-831.
    [118] Kittel C. Introduction to Solid State Physics. 8th ed. New York: John Wiley & Sons; 2004.
    [119] Takeuchi A, Inoue A. Mater Trans. 2005;46:2817-29.
    [120] Ducros C, Sanchette F. Surf Coat Technol. 2006;201:1045-52.
    [121] Oliver WC, Pharr GM. J Mater Res. 1992;7:1564-83.
    [122] Lin RC, Lee TK, Wu DH, Lee YC. Adv Mater Sci Eng. 2015:7.
    [123] Yang X, Zhang Y. Mater Chem Phys. 2012;132:233-8.
    [124] Porter DA, Easterling KE. Phase Transformations in Metals and Alloys. 2nd ed. London: Chapman & Hall; 1992.
    [125] Chu JP, Liu CT, Mahalingam T, Wang SF, O'Keefe MJ, Johnson B, et al. Phys Rev B. 2004;69:113410.
    [126] Chu JP, Lo CT, Fang YK, Han BS. Appl Phys Lett. 2006;88:012510.
    [127] Liu KT, Duh JG. Surf Coat Technol. 2008;202:2737-42.
    [128] Chen GJ, Jian SR, Jang JSC, Shih YH, Chen YT, Jen SU, et al. Intermetallics. 2012;30:127-31.
    [129] Chen CS, Yiu P, Li CL, Chu JP, Shek CH, Hsueh CH. Mater Sci Eng, A. 2014;608:258-64.
    [130] Rajan ST, Kumar AKN, Subramanian B. CrystEngComm. 2014;16:2835-44.
    [131] Apreutesei M, Steyer P, Billard A, Joly-Pottuz L, Esnouf C. J Alloy Compd. 2015;619:284-92.
    [132] McGlone JM, Olsen KR, Stickle WF, Abbott JE, Pugliese RA, Long GS, et al. J Alloy Compd. 2015;650:102-5.
    [133] Kumar SV, Singh RK, Raja MM, Kumar A, Bysakh S, Mahendran M. Intermetallics. 2016;71:57-64.
    [134] Kao SW, Chen YL, Chin TS, Yeh JW. Ann Chim-Sci Mat. 2006;31:657-68.
    [135] Kao SW, Yeh JW, Chin TS. J Phys-Condes Matter. 2008;20:7.
    [136] Cowell EW, Alimardani N, Knutson CC, Conley JF, Keszler DA, Gibbons BJ, et al. Adv Mater. 2011;23:74-8.
    [137] Alimardani N, Cowell EW, Wager JF, Conley JF, Evans DR, Chin M, et al. J Vac Sci Technol A. 2012;30:01A113.
    [138] Muir S, Meyer J, Brewer J. Inf Disp. 2016;32:22-7.
    [139] Simmons JG. J Appl Phys. 1963;34:2581-9.
    [140] Tsai MH, Lai CH, Yeh JW, Gan JY. J Phys D-Appl Phys. 2008;41:7.
    [141] Jiao ZB, Li HX, Gao JE, Wu Y, Lu ZP. Intermetallics. 2011;19:1502-8.
    [142] Berwell Jr. JT. Wear. 1957;1:119-41.
    [143] Leyland A, Matthews A. Wear. 2000;246:1-11.
    [144] Baker MA, Kench PJ, Tsotsos C, Gibson PN, Leyland A, Matthews A. J Vac Sci Technol, A. 2005;23:423-33.
    [145] Joseph MC, Tsotsos C, Baker MA, Kench PJ, Rebholz C, Matthews A, et al. Surf Coat Technol. 2005;190:345-56.
    [146] Zhang B, Chen YG, Guo HB. J Alloy Compd. 2014;582:496-9.
    [147] Lee J, Huang KH, Hsu KC, Tung HC, Lee JW, Duh JG. Surf Coat Technol. 2015;278:132-7.
    [148] Wang PC, Lee JW, Yang YC, Lou BS. Thin Solid Films. 2016;618, Part A:28-35.
    [149] Chu JH, Chen HW, Chan YC, Duh JG, Lee JW, Jang JSC. Thin Solid Films. 2014;561:38-42.
    [150] Samsonov GV, Vinitskii IM. Handbook of Refractory Compounds: IFI/Plenum Data Company; 1980.
    [151] Seropegin YD, Rudometkina MV. J Less-Common Met. 1987;135:127-35.
    [152] Rudometkina MV, Seropegin YD, Schvyryaeva EE. J Less-Common Met. 1988;138:263-9.
    [153] Rudometkina MV, Seropegin YD, Gribanov AV, Gusei LS. J Less-Common Met. 1989;147:239-47.
    [154] Frommeyer G, Rosenkranz R. Structures and Properties of The Refractory Silicides Ti5Si3 and TiSi2 and Ti-Si-(Al) Eutectic Alloys. In: Senkov ON, Miracle DB, Firstov SA, editors. Metallic Materials with High Structural Efficiency. New York: Kluwer Academic Publishers; 2004. p. 290.
    [155] Xing WD, Meng FY, Yu R. Comput Mater Sci. 2017;129:252-8.
    [156] Hsu HC, Wu SC, Hsu SK, Hsu CC, Ho WF. J Mater Eng Perform. 2016;25:1986-92.
    [157] Kong B, Jia L, Zhang H, Sha J, Shi S, Guan K. Int J Refract Met Hard Mater. 2016;58:84-91.
    [158] Minouei H, Akbari GH, Enayati MH, Hong SI. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2017;682:396-401.
    [159] Webb GW. Phys Rev. 1969;181:1127-35.
    [160] Schauer A, Roschy M. Thin Solid Films. 1972;12:313-7.
    [161] Singh B, Surplice NA. Thin Solid Films. 1972;10:243-53.
    [162] Desai PD, James HM, Ho CY. J Phys Chem Ref Data. 1984;13:1097-130.
    [163] Matsuda K, Sato K, Doi T, Ogata K, Konish K. Natl Tech Rep. 1980;26:283-8.
    [164] Mooij JH. Phys Status Solidi A-Appl Res. 1973;17:521-30.
    [165] Tsuei CC. Phys Rev Lett. 1986;57:1943-6.

    QR CODE