研究生: |
劉庭瑋 |
---|---|
論文名稱: |
微噴霧式直接甲醇燃料電池之高濃度燃料自動供給系統 High Concentration of Micro-fuel-droplets Automatically Supply for Self-sustained Direct Methanol Fuel Cells |
指導教授: |
曾繁根
蘇育全 |
口試委員: |
凌守弘
薛康琳 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 噴霧式 、直接甲醇燃料電池 、高濃度甲醇 、自動供料 |
外文關鍵詞: | micro-droplets, DMFC, high concentration of fuel, self-sustained |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展出一套自動化燃料供給系統應用於為噴霧式直接甲醇燃料電池(DMFCs)。以垂直噴霧形式改善傳統式燃料供應上遭遇之困難,不僅大幅增加觸媒反應面積,亦可簡化構造達到節省成本與系統耗能(BOPs)之目的。
近年來,蛇腹型流道式廣泛運用於燃料電池進料端,但此平行燃料供給方式有幾個缺點,陽極端反應產物二氧化碳氣泡會阻塞於流道板內,造成反應面積下降,導致觸媒無法有效利用,且濃度、壓力及溫度梯度造成反應不均勻的問題。
本研究希望發展出垂直供應燃料方式解決上述之問題,利用針尖與壓電元件之間產生的毛細吸引力縮小液珠粒徑,達到微量噴霧直接推送到膜電極組(MEA)進行反應,在燃料輸送上不需使用到傳統石墨流道板,因此可以克服上述之問題,且設計無壓力梯度所造成之壓差,可降低泵浦輸送上能量之損耗。
依照微噴霧式燃料供給至膜電極阻(MEA)的型態可分為擴散型與直接供應型。將微噴霧擴散型與直接未加裝石墨流道板之液態循環方式比較,其結果可發現擴散型以10%甲醇混合液供應,其功率密度峰值可達到55mW*cm-2遠高於循環式(40 mW*cm-2),並可在於40 mW*cm-2穩定操作30分鐘。
在燃料消耗上,微噴霧式直接供應型可將燃料供應濃度從2M提升到5M,配合Labview控制定電流模式下燃料輸送之時機,精準控制負載端能量輸出所需的燃料使用量,系統操作經過空氣中斷(Air starvation)、定電流負載(Feeding fuel)、定電壓負載(Fuel consumption)的過程,不會有甲醇供應濃度過高或供應量過多的問題,由實驗結果可得知依照此燃料供應邏輯,長時間操作於定電流(350mA)模式下有一穩定功率(12mW*cm-2)輸出,期望能增加燃料電池可應用之範圍。
In this paper, a micro-droplets fuel supply system has been developed for direct methanol fuel cells (DMFCs) by piezoelectric actuation. Compared with common serpentine flow plate, this new fuel supply mode can improve fuel usage rate and power density while lower down carried fuel volume and fuel crossover issue in DMFCs.
A micro droplets device with various concentration of fuel supply was tested and expected to find the most suitable fuel supplying mode. PZT ceramic was used to actuate droplets. A syringe needle tip was fixed 0.2-0.5mm above the piezo actuator surface to provide fuel for atomizing into 4-5μm droplets. The droplet size was much smaller than Si-based nozzle. Methanol mixture in tank transported by micro pump would be broken by piezoelectric actuation into droplets and sprayed onto the anode of DMFCs directly. Air at cathode was introduced convectively by a fan, and the cell was operated at room temperature. When the device was setup, various concentration of the fuel was supplied to the cell. The results showed that methanol mixture reaching 6M is the optimized concentration for the cell. Compared to the circulatory system, micro-droplets system, could greatly improve power density at the same condition (60 Celsius). On the other hand, the voltage fluctuated more drastically in micro-droplets system, and it enables the usage of higher concentration methanol fuel (5M) relative to circulatory flow system (2M), resulting in a higher peak power density at 32.5mW*cm-2 than that (20.5mW*cm-2) of the circulatory system at 0.4V.
[1] a. a. Kulikovsky, “Model of the flow with bubbles in the anode channel and performance of a direct methanol fuel cell,” Electrochemistry Communications, vol. 7, no. 2, pp. 237–243, Feb. 2005.
[2] C. W. Wong, T. S. Zhao, Q. Ye, and J. G. Liu, “Transient Capillary Blocking in the Flow Field of a Micro-DMFC and Its Effect on Cell Performance,” Journal of The Electrochemical Society, vol. 152, no. 8, p. A1600, 2005.
[3] H. Yang, T. S. Zhao, and Q. Ye, “Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells,” Journal of Power Sources, vol. 142, no. 1–2, pp. 117–124, Mar. 2005.
[4] Q. Y. H. Yang, T.S. Zhao∗, “In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields.pdf,” Journal of Power Sources, vol. 139, pp. 79–90, 2005.
[5] M. P. H. A K Shukla, P A Christensen, A Hamnett, “9 A VAPOR-FEED DIRECT-METHANOL FUEL-CELL WITH PROTON-EXCHANGE MEMBRANE ELECTROLYTE1995.pdf,” Journal of Power Sources, vol. 55, pp. 87–91, 1995.
[6] A. S. Martin Hogarth, Paul Christensen, Andrew Hamnett, “10 The design and construction of high-performance direct methanol fuel cells. 2. Vapour-feed systems.pdf,” Journal of Power Sources, vol. 69, no. 1–2, pp. 125–136, 1997.
[7] R. Chen, T. S. Zhao, and J. G. Liu, “Effect of cell orientation on the performance of passive direct methanol fuel cells,” Journal of Power Sources, vol. 157, no. 1, pp. 351–357, Jun. 2006.
[8] S. W. C. Ikwhang Chang Seungbum Ha, Sunghan Kimb, Sangkyun Kang, Jinho Kim, Kyounghwan Choic, “Operational condition analysis for vapor-fed direct methanol fuel cells.pdf,” Journal of Micromechanics and Microengineering, vol. 188, pp. 205–212, 2009.
[9] J. Kallo, J. Kamara, W. Lehnert, and R. von Helmolt, “Cell voltage transients of a gas-fed direct methanol fuel cell,” Journal of Power Sources, vol. 127, no. 1–2, pp. 181–186, Mar. 2004.
[10] G. Jewett, Z. Guo, and A. Faghri, “Performance characteristics of a vapor feed passive miniature direct methanol fuel cell,” International Journal of Heat and Mass Transfer, vol. 52, no. 19–20, pp. 4573–4583, Sep. 2009.
[11] Z. Guo and A. Faghri, “Vapor feed direct methanol fuel cells with passive thermal-fluids management system,” Journal of Power Sources, vol. 167, no. 2, pp. 378–390, May 2007.
[12] W. W. Y. amd R. chen Q.X. Wu, T.S Zhao, “A flow field enabling operating direct methanol fuel cells.pdf,” International Journal of Hydrogen Energy\, vol. 36, pp. 830–838, 1997.
[13] X. Feng and R. Y. M. Huang, “Liquid Separation by Membrane Pervaporation: A Review,” Industrial & Engineering Chemistry Research, vol. 36, no. 4, pp. 1048–1066, Apr. 1997.
[14] H. Kim, “Passive direct methanol fuel cells fed with methanol vapor,” Journal of Power Sources, vol. 162, no. 2, pp. 1232–1235, Nov. 2006.
[15] J. Rice and A. Faghri, “Analysis of a passive vapor feed direct methanol fuel cell,” International Journal of Heat and Mass Transfer, vol. 51, no. 3–4, pp. 948–959, Feb. 2008.
[16] C. Xu, A. Faghri, and X. Li, “Development of a High Performance Passive Vapor-Feed DMFC Fed with Neat Methanol,” Journal of The Electrochemical Society, vol. 157, no. 8, p. B1109, 2010.
[17] C. Xu and A. Faghri, “Mass transport analysis of a passive vapor-feed direct methanol fuel cell,” Journal of Power Sources, vol. 195, no. 20, pp. 7011–7024, Oct. 2010.
[18] B. Xiao and A. Faghri, “Numerical analysis for a vapor feed miniature direct methanol fuel cell system,” International Journal of Heat and Mass Transfer, vol. 52, no. 15–16, pp. 3525–3533, Jul. 2009.
[19] J. M. Meacham, M. J. Varady, F. L. Degertekin, and a. G. Fedorov, “Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling,” Physics of Fluids, vol. 17, no. 10, p. 100605, 2005.
[20] J. M. Meacham, C. Ejimofor, S. Kumar, F. L. Degertekin, and a. G. Fedorov, “Micromachined ultrasonic droplet generator based on a liquid horn structure,” Review of Scientific Instruments, vol. 75, no. 5, p. 1347, 2004.
[21] T. P. Forbes, F. L. Degertekin, and A. G. Fedorov, “Multiplexed operation of a micromachined ultrasonic droplet ejector array.,” The Review of scientific instruments, vol. 78, no. 10, p. 104101, Oct. 2007.
[22] M. J. Varady, L. McLeod, J. M. Meacham, F. L. Degertekin, and a G. Fedorov, “An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation,” Journal of Micromechanics and Microengineering, vol. 17, no. 9, pp. S257–S264, Sep. 2007.
[23] V. G. Zarnitsyn, J. M. Meacham, M. J. Varady, C. Hao, F. L. Degertekin, and A. G. Fedorov, “Electrosonic ejector microarray for drug and gene delivery.,” Biomedical microdevices, vol. 10, no. 2, pp. 299–308, Apr. 2008.
[24] J. M. Meacham, A. O’Rourke, Y. Yang, A. G. Fedorov, F. L. Degertekin, and D. W. Rosen, “Micromachined Ultrasonic Print-Head for Deposition of High-Viscosity Materials,” Journal of Manufacturing Science and Engineering, vol. 132, no. 3, p. 030905, 2010.
[25] L. Levin, B. T. Khuri-yakub, and I. Introduction, “Piezoelectrically actuated droplet ejector,” no. December, pp. 4561–4563, 1997.
[26] G. Perçin and B. T. Khuri-Yakub, “Piezoelectrically actuated flextensional micromachined ultrasound droplet ejectors.,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 49, no. 6, pp. 756–66, Jun. 2002.
[27] G. Perçin and B. T. Khuri-Yakub, “Piezoelectrically actuated flextensional micromachined ultrasound transducers.,” Ultrasonics, vol. 40, no. 1–8, pp. 441–8, May 2002.
[28] Y.-R. Jeng, C.-C. Su, G.-H. Feng, Y.-Y. Peng, and G.-P. Chien, “A PZT-driven atomizer based on a vibrating flexible membrane and a micro-machined trumpet-shaped nozzle array,” Microsystem Technologies, vol. 15, no. 6, pp. 865–873, Apr. 2009.
[29] S. C. Chen, C. H. Cheng, and Y. C. Lin, “Analysis and experiment of a novel actuating design with a shear mode PZT actuator for microfluidic application,” Sensors and Actuators A: Physical, vol. 135, no. 1, pp. 1–9, Mar. 2007.
[30] K. Scott, W. Taama, D. R. A. Haslar, and G. Britain, “Performance of a direct methanol fuel cell *,” vol. 28, no. August 1996, pp. 289–297, 1998.
[31] S. Hikita, K. Yamane, and Y. Nakajima, “Measurement of methanol crossover in direct methanol fuel cell,” vol. 22, pp. 151–156, 2001.
[32] J. Kallo, W. Lehnert, and R. von Helmolt, “Conductance and Methanol Crossover Investigation of Nafion Membranes in a Vapor-Fed DMFC,” Journal of The Electrochemical Society, vol. 150, no. 6, p. A765, 2003.
[33] C. W. W. J G Liu, T S Zhao, R Chen, “The effect of methanol concentration on the performance of a passive DMFC.pdf,” Electrochemistry Communications, vol. 7, no. 3, pp. 288–294, 2005.
[34] S. Eccarius, F. Krause, K. Beard, and C. Agert, “Passively operated vapor-fed direct methanol fuel cells for portable applications,” Journal of Power Sources, vol. 182, no. 2, pp. 565–579, Aug. 2008.
[35] 曾俊欽, 推拉式壓電噴嘴製作及噴霧特性, 國立成功大學航空太空工程學系碩士論文, 2007