研究生: |
方文志 Wen Chih Fang |
---|---|
論文名稱: |
2.45 GHz單模作用腔物理特性分析與微波燒結之研究 Design and Analysis of a 2.45 GHz Single-Mode Applicator and Mircowave Sintering Study |
指導教授: |
朱國瑞
Kwo Ray Chu 張存續 Tsun Hsu Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 微波 、混合加熱 、鐵電材料 |
外文關鍵詞: | microwave, hybrid heating, PZT |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文一開始主要是設計一個高效率的作用腔(Applicator),然後再以此作用腔來做材料的加熱實驗。因此分成兩個部分,第一部分為半橢圓共振腔的模擬與設計,從偶合孔(coupling hole)、離心率(eccentric rate)和模態(mode)的選擇談起,討論為何做這樣選擇的目的與好處,而因為微波源的頻率是固定的,然而在微波加熱的過程中,頻率是一直飄移的,因此最後設計再加一個調頻的機制,使頻率固定在微波源的操作頻率-2.45GHz。第二部分為實驗,在實驗的過程中,發現直接加熱PZT薄膜是不可行的,因此需要輔助加熱的物質,在此篇論文中是選擇SiC來做輔助加熱的物質,而在實驗上我們也發現SiC確實增加了作用的效果,而我們希望這種混合加熱(Hybrid Heating)的方法,能有效的使材料發生燒結(Sintering)的效果。
[1]David M. Pozar, Microwave Engineering, Addison-Wesley, 1990.
[2]W. candy, “Piezoelectric,” Mc Gfaw-Hill, New YORK, 1946.
[3]B. Jaff, W. Cook, and H. Jaffe, “Piezoelectric Ceramics,” Academic Press, London and York, 1971.
[4]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramics,” 2nd Edition, John Wiley & Sons, New York, 1976, Chapter 18.
[5]H. Ouchi, S. Kawshima, M. Nishida, and I. Ueda: Annual Report of Study Group on Appl. Ferroelectrics in Japan, 32-173-1078-20, 1983.
[6]Shirane, Jona and Depinsky, “Some Aspect of Ferroelectricity,” Proc. IRE, Dec., 1738, 1955.
[7]J. D. Walton, Jr., “Inorganic Randomes,” pp.229-344 in Random Engineering Handbook. Edited by J. D. Walton, Jr. Marcel Dekker, Inc., New York, 1970.
[8]S. L. McGill, J. Walkiewicz, and G. A. Smyres, “The Effect of Power Level on the Microeave Heating of Selected Chemical Minerals,” pp.247-252 in Microwave Processing of Materials, vol. 124. Edited by W. H. Sutton, M. H. Brooks, and I. J. Chabinsky. Materials Research Society, Pittsburgh, PA, 1988.
[9]J. M. Osepchuk, “A History of Microwave Heating Applications,” IEEE Trans. Microwave Theory & Tech., MTT-32 [9], 1200~24, 1984.
[10]W. H. Sutton, “Microwave Proceeding of Ceramic Materials,” Bull. Am. Ceram. Soc., 68[2], 376~86, 1989.
[11]I. J. Chibinsky, E. E. Eves III, “The Application of Microwave Energy in Drying, Calcing and Firing of Ceramics,” Interceram., No.6, 30~35, 1986.
[12]R. E. Collin, “Fundations of Microwave Engineering, ” Chapter. 2, McGraw-Hill, 1966.
[13]Ion Bunget and Mihai Popescu, pp.282 in “Physics of Solid Dielectrics,” Elsevier Ansterdan-Oxford-New york-Tokyo, 1984.
[14]R. M. German, “Power Metallurgy Science,” Metal Powder Industries Federation, Princeton, New Jersey, pp.145, 1984.
[15]James S. Reed, “Intriduction to the Principles of Ceramic Process,” pp.449, John Wiley & Sons, Singapore, 1989.
[16]M. A. Janney and H. D. Kimrey, “Diffusion-Controlled Processes in Microwave-Fired Oxide Ceramics,” Mater. Res. Soc. Synp. Proc., 189, pp.215-227, 1990.
[17]M. A. Janney, C. L. Calhoun, and G. D. Kimery, “Microwave Sintering of Solid Oxide Fuel Cell Materials: I. Zirconia-8 mol% Yttria,” J. Am. Ceram. Soc., 75[2], pp.341-346, 1992.
[18]B. Jaff, R. S. Roth and S. Marzullo, “Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics,” J. Appl. Phys, 25, pp.809, 1954.
[19]W. D. Kingery and M. Berg, “Study of the Initial Stages of Sintering Solids by Viscous Flow Evaporation-Condensation, and Self-Diffusion,” J. Appl. Phys, 26, pp.1205, 1955.
[20]R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models,” J. Appl. Phys, 32, pp.787, 1961.
[21]R. L. Coble, “Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts,” J. Appl. Phys, 32, pp.793, 1961.