簡易檢索 / 詳目顯示

研究生: 吳季衡
Chi-Heng Wu
論文名稱: 以指骨成長的相關度及回歸分析為基礎的指骨骨骼年齡研究
Phalanxes Analysis and Selection Based on Correlation and Regression analysis for Bone Age Development
指導教授: 鐘太郎
Tai-Lang Jong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 46
中文關鍵詞: 指骨骨骼年齡判定
外文關鍵詞: phalange, bone age estimation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文中,利用電腦作影像分析去抽取指骨特徵抽取,並使用統計軟體SPSS,去做骨骼生長同步分析的研究。在本文中我們將重點放在生長板的部分,先用手動將生長板切割出來,再抽取了一些指骨生長板的特徵,像是生長板上下的弧度,它的長寬比以及周長面積比等等。之後我們用這些抽取出來的特徵作統計上的比較,以了解各指節之間相對生長的狀況。另外,我們也利用回歸分析去判斷各個特徵的重要性,並分別用他們去做指骨年齡判定,已證明他們的準確性。由於一些指骨年齡判定的研究,常常假設食指、中指以及無名指的生長速度是一樣的,但是並沒有實際的數據去證明這件事。我們就用實際的指骨數據去說明這個假設是否正確。這個研究提供了指節相關度的評估,也證明只用中指即可以提供良好的特徵去做指節年齡的判定。我們也證明了如果用到好的特徵,只用一個指節所做出來的指骨年齡判定,會比用多個指節一起做出來的效果要好。最後實驗結果的指骨年齡判定也令人滿意。只用其中一個特徵判定出的正確率有75.39%(在一歲半的容錯範圍內),用四個特徵一起判定出的正確率有83.08%(在一歲半的容錯範圍內)。因為通常年齡判定只要在一歲板的誤差之內就算市可以接受。這個結果可以提供給研究指骨年齡判定相關研究的人士,一個參考的依據。


    The thesis investigates whether the bone growth of each phalange exhibits synchronization by analyzing the phalanxes’ features statistics via some computer image processing techniques and SPSS. Some features from the epiphysis, like radian of the epiphyseal, the ratio of width and thickness of the epiphyseal, the ratio of circumference of epiphyseal divided by area of epiphyseal, and so on are used in the investigation. Some physicians hypothesize that the second, third and fourth phalanges grow synchronously. We use the actual phalangial data to check if the hypothesis is right or not. The study not only makes a correlation evaluation of phalanxes but supports direct evidence that a feature of middle finger could be used as a good index to describe the bone age.

    ABSTRACT i 摘要 ii Contents iii List of figures iv List of tables vi Chapter 1 Introduction 1 Chapter 2 Preprocessing 3 Chapter 3 Feature extraction7 3.1 Gabor filter 7 3.2 Discrete cosine transform (DCT) 9 3.3 The support Vector Machine of Neural Network 10 3.3.1 Neural Network 11 3.3.2 Support Vector Machine 11 3.3.3 principal components analysis (PCA) 14 3.3.4 Spatial features extraction 16 Chapter 4 Experimental Results 20 4.1 Correlation coefficients calculation 20 4.2 Regression analysis 30 4.3 use back propagation (BP) method to do the BAE 38 Chapter 5 Conclusion and future works 42 Reference 45

    [1] E. Pietka, A. Gertych, S. Pospiech, F. Cao, H. K. Huang, “Computer-Assisted Bone Age Assessment: Image Preprocessing and Epiphyseal/Metaphyseal ROI Extraction”, IEEE Transactions On Medical Imaging, Vol.20, No.8, pp.715-729, August 2001.

    [2] E. Pietka, L. Kaabi, M. L. Kuo, and H. K. Huang, “Feature Extraction in Carpal-Bone Analysis”, IEEE Trans. Med. Imag., Vol.12, No.1, March 1993.
    [3] Tristan, A. and Arribas, J.I.; “A RADIUS AND ULNA SKELETAL AGE ASSESSMENT SYSTEM”

    [4] G. R. Milner, R. K. Levick and R. Kay, ”Assessment Of Bone Ages: A Comparison Of The Greulich and Pyle, and The Tanner and Whitehouse Methods”, Clin Radiol, Vol.37, pp.119-212, 1986

    [5] Chi-Hsing Chang and Tai-Lang Jong, “An Investigation of Computerized Automatic Bone Age Assessment System Based on Phalangeal Image Features”

    [6] Chengjun Liu, and Harry Wechsler, “ Independent Component Analysis of Gabor Features for Face Recognition”, IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

    [7] Chengjun Liu, and Harry Wechsler, “Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition”, IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 4, APRIL 2002
    [8] Simon Haykin, NEURAL NETWORKS a comprehensive foundation

    [9] Yuchun Tang, Bo Jin, Yi Sun, and Yan-Qing Zhang, “Granular Support Vector Machines for Medical Binary Classification Problems”

    [10] Jurgen schurmann, “Pattern Classification—a unified view of statistical and neural approaches”

    [11] E. Pietka, M. F. McNitt-Gray, M. L. Kuo and H. K. Huang, “Computer-Assisted Phalangeal Analysis in Skeletal Age Assessment”, IEEE Trans. Med. Imag., Vol.10, No.4, December 1991.
    [12] E. Pietka and H. K. Huang, “Epiphyseal Fusion Assessment Based On Wavelets Decomposition Analysis”, Computerized Medical Imaging and Graphics, Vol.19, No.6, pp.465-472, 1995.
    [13] A. M. M. D. Silva, S. D. Olabarriaga, C. A. Dietrich and C. A. A. Schmitz, “On Determining A Signature For Skeletal Maturity”, Computer Graphics and Image Processing, 2001 Proceedings of XIV Brazilian Symposium, pp.246-251, 15-18 Oct. 2001.
    [14] M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis, and Machine Vision, 2nd edition, PWS, 1999
    [15] L. Hong, Y. Wan and A. Jain, “Fingerprint Image Enhancement: Algorithm and Performance Evaluation”, IEEE Transactions On Pattern Analysis and Machine Intelligence, Vol.20, No. 8, August 1998.
    [16] N. Mittal, D. P. Mital and K. L. Chan, “ Features For Texture Segmentation Using Gabor Filter”, Image Processing and Its Applications, 1999, Seventh International Conference On (Conf, Publ. No.465), Volume:1, Vol.1, pp.353-357, 13-15 July 1999.
    [17] B. S. Sharif, S. A. Zaroug, E. G. Chester, J. P. Owen, E. J. Lee, “Bone Edge Detection In Hand Radiographic Images”, Engineering In Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings Of The 16th Annual International Conference Of The IEEE, Vol.1, pp.514-515, 3-6 Nov. 1994.
    [18] J.H. Chen, “A Computerized Skeleton Age Assessment Based On Phalangeal Image and Neural Network Approach”, Master Thesis, EE Nthu, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE