簡易檢索 / 詳目顯示

研究生: 陳智華
論文名稱: 常微分方程式週期解路徑之分歧與延拓
指導教授: 簡國清 老師
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 175
中文關鍵詞: 打靶法虛擬弧長延拓法牛頓法
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要在探討隨著參數變動的非線性常微分方程組之數學模型。在解此模型的穩定解時,將產生非線性方程組。本文提供一演算法來求並延拓隨著一個參數變動的非線性常微分方程組之週期解,我們稱他為擬弧長演算法(pseudoarclength algorithm),擬弧長演算法係基於打靶法(shooting method)、隱函數定理(implict function theorem)、猜測及解法(predictor-solver)以及本文裡所提到的延著解路徑延拓的方法。運用虛擬弧長延拓法可以使解路徑順利通過轉彎點或是跳過分歧點,而能延拓出整個解路徑來。從數值實驗的結果,我們成功的得到常微分方程組的多重週期解與單一解的區間性及穩定性,我們發現初始值對振幅具有決定性的影響。


    In this paper, we discussed the mathematical models in the form of systems of nonlinear ordinary differential equations depending on a chosen physical parameter. Stationary solutions of the models then result from a set of nonlinear ( algebraic) equations.
    An algorithm for continuation of periodic solutions in ordinary differential equations in dependence on a parameter is presented in this article which we called it as pseudoarclength algorithm. The pseudoarclength algorithm for the continuation of periodic solutions based on the shooting method, implicit function theorem, predictor-solver method and continuation along the arc-length of solutions path is described in this paper.
    The pseudoarclength algorithm can pass through limits points or jump over bifurcation points so that we can find out the whole solutions path. From the numerical experiment, we trace out the range between multiple periodic solutions and single solutions of ordinary differential equations. Finally, we find that the initial value has significant influence on the amplitude .

    第一章 緒論…………………………………………………………………… 1 第二章 分歧理論與虛擬弧長延拓法………………………………………… 5   2.1  分歧問題…………………………………………………………… 5 2.2  分歧理論……………………………………………………………10   2.3  局部延拓法…………………………………………………………12   2.4  虛擬弧長延拓法……………………………………………………18 第三章 常微分方程週期解的數值解法………………………………………21   3.1  週期解的數值解法…………………………………………………21   3.2  常微分方程式週期解路徑之延拓…………………………………29   (1)局部延拓法求解路徑……………………………………………….29   (2)虛擬弧長延拓法求解路徑………………………………………….31 第四章 常微分方程式週期解的數值實驗……………………………………40 4.1 演算法的測試………………………………………………………42 (1)不同的時間步距…………………………………………………… 42 (2)時間對振幅的情形………………………………………………… 47 4.2  常微分方程模型的非線性特性……………………………………50 (1)小振幅外力對模型振幅的影響…………………………………… 50 (2)初始值對振幅的影響……………………………………………… 52   (3)初始值對振盪頻率的影響………………………………………… 59 4.3  參數改變對模型的影響……………………………………………62 (1)參數 p 改變對模型的影響…………………………………………62 (2)參數 m 改變對模型的影響…………………………………………82 (3)參數 d 改變對模型的影響 ………………………………………105 (4)參數  改變對模型的影響 ………………………………………116 (5)參數  改變對模型的影響 ………………………………………124 4.4  多重週期解區間 …………………………………………………134 (1)參數 p 的多重解區間 ……………………………………………134 (2)參數 m 的多重解區間 ……………………………………………140 (3)參數 d 的多重解區間 ……………………………………………148 (4)參數  的多重解區間 ……………………………………………153 (5)參數  的多重解區間 ……………………………………………161 第五章  結論 …………………………………………………………………168 參考文獻 ………………………………………………………………………172

    [1] Anaronov, A. A., Leontivich, E. A., Gordon, I. I. and Maier, A. G., Theory of Bifurcations of Dynamics Systems on A Plane, Wiley, New York, 1973.
    [2] Atkinson, K.E.,The numerical solution of bifurcation problems, SIAM J. Numer. Anal.,14(4),584-599, 1977.
    [3] Aselone, P. M. and Moore, R. H., An Extension of the Newton-Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. 13, pp. 476-501, 1966.
    [4] Bauer, L., Reiss, E. L., and Keller, H. B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, pp. 529-568, 1970.
    [5] Brown,K.J.,Ibrahim,M.M.A. and Shivaji,R.,S-Shaped bifurcation curves, Nonlinear Analysis,T.M.A,5,475-486, 1981.
    [6] Burton, T. A., Stability and Periodic Solution of Ordinary and Functional Differential Equations, Academic Press, 1985
    [7] Coddington, E. A., and Levinson N., Theory of Ordinary Differential Equa-tions, McGraw-Hill.New York, 1955.
    [8] Choi, Y. S., Her, O. H., and McKenna, P. J., Periodic Oscillations of A Suspension Bridge Model,to be submitted.
    [9] Choi, Y. S., Jen, K. C.,(簡國清) and McKenna, P. J., Theructure of the Solution Set for Periodic Oscillations in a Suspension Bridge Model, IMA J. Appl. Math.,47,pp. 283-306,(1991).
    [10] Crandall, M. G., and Rabinowtiz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, 1979.
    [11] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York,1-35, 1977.
    [12] Glover, J., Lazer, A. C., and Mckenna, P. J.,Existence of Stability of Large Scale Nonlinear Oscillations in Suspension Bridge, Journal Applied Mathematics and Physics(ZAMP) vol. 4,pp 172-200, 1989.
    [13] Golubiksky, M., and Schaeffer, D. G., Singularities and Groups in Bifurcatiion Theory, Vol.1, Applied Mathematical Sciences 51, Springer Verlag, New York, 1984.
    [14] Hale, J. K., Ordinary Differential Equations, Wiley- Interscience, New York, 1969.
    [15] Hopf, E., Abzweigung Einer Periodoshen Losung Eiens Differential Systems, Berichten der Math.-Phys. Klasse der Sachischen Akademie der Wissenschaften zu Leipzig, XCIV,1-22,1942.
    [16] Iooss, G., and Joseph, D. D., Elementary Stability and Bifurcation Theorem, Springer-Verlag, New York, 1980.
    [17] Jen, K.C.(簡國清), The Stability and Convergence of a Crank-Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol 23, No. 2,pp. 97-121,(1995).
    [18] Jepson A.D. and Spence A.,Numerical Methods for Bifurcation Problems, State of the Art in NUmerical Analysis,edit bu A. Iserles,MJD Powell, 1987.
    [19] Jepson A. D. and Spence A., The Numerical Solution of Nonlinear Equations Having Several Parameters I: Scalar Equations, SIAM J. Numer. Anal., No. 4, 1985.
    [20] Keller, H.B. and Langford, W.F. ,Iterations, perturbations and multiplicities for nonlinear bifurcation problems,Arch. Rational Mech. Anal., 48,83-108, 1972.
    [21] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, 1977.
    [22] Keller, H. B.,Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987.
    [23] Keller, H. B., in" Recent Advances in Numerical Analysis ", Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p. 73, 1978.
    [24] Kubi${\widetilde{c}}$ ek, M. and Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, 1983.
    [25] Lazer, A. C., and McKenna, P. J., Large-Amplitude Periodic Oscillations in Suspension Bridges: Some New Connections with Nonliner Analysis, SIAM Review, Vol 32, No4, 1990, 537-578.
    [26] Rheinboldt,W.C.,Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York).
    [27] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Con-tinuation Methods, SIAM J. Numer. Anal., 17, pp. 221-237, 1980.
    [28] S.S. Antman, The Equations for Large Vibrations of strings, American Mathematical Monthly, 359-370, 1980.
    [29] Tyndall,1869. On Sound, $2^{nd}$ ed., Longmans, London, Green, 104.
    [30] Wacker, H. (ed.). Continuation Methods, Academic Press, New York,(1978).
    [31] Wang,S.H.,On s-Shaped bifurcation curves,Nonlinear  Analysis,T.M.A,22,1475-1485, 1994.
    [32] Weiss,R.,Bifurcation in Difference Approximations to Two-Point Boundary Value Problem, Math. Comp., 29, pp. 746-760,(1975).
    [33] 魏欽海, 吊橋懸臂鋼管的週期解路徑之延拓與分歧。輔仁大學碩士論文, 1994.
    [34] 林保良, 振動索多重週期解之數值研究。輔仁大學碩士論文, 1996.
    [35] 陳俊傑, 浮動樑之週期解路徑的延拓與分歧。輔仁大學碩士論文, 1998.
    [36] 周鴻泉, Lazer--Mckenna吊橋模型週期解路徑之數值探討。新竹師院碩士論文,2002.
    [37] 賴香君, 懸臂振盪索的週期解路徑之分歧問題。新竹師院碩士論文, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE