簡易檢索 / 詳目顯示

研究生: 阮至緯
論文名稱: 鉬化物薄膜之沈積及分析
Deposition and Analyses of the Thin Film of Molybdenum Compound
指導教授: 游萃蓉
口試委員: 李紫原
蔡宗閔
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 69
中文關鍵詞: 二硫化鉬二氧化鉬硫化退火三氧化鉬
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,主要專注於成長兩種不同之鉬化物薄膜及分析,分別為二硫化鉬 (MoS2) 以及二氧化鉬 (MoO2)。二硫化鉬利用磁控濺鍍 (magnetron sputtering) 的方式鍍膜後,在硫蒸氣下以550 °C退火,以提升MoS2的光吸收係數 (absorption coefficient, α) 和結晶性 (crystallinity)。並利用掃描式電子顯微鏡 (SEM) 和穿透式電子顯微鏡 (TEM) 觀察表面形貌及微結構,透過低掠角X光繞射分析儀 (GIXRD) 分析結晶性,利用X-ray光電子能譜儀 (XPS) 進行元素分析,最後利用紫外/可見光吸收光譜儀 (UV-vis) 進行光學性質分析,最後得到與硫蒸氣退火後的MoS2薄膜具有高光學吸收係數 (5.5 104 cm-1)。
    二氧化鉬利用兩階段式化學氣相沉積法 (two-steps chemical vapor deposition) 製備,在第一階段中成長三氧化鉬 (MoO3) 之後,於第二階段中使MoO3和硫蒸氣反應後生成MoO2。並利用掃描式電子顯微鏡 (SEM) 觀察表面形貌,透過低掠角X光繞射分析儀 (GIXRD) 分析結晶性,以X-ray光電子能譜儀 (XPS) 進行元素分析,利用霍爾量測系統 (Hall-effect) 量測試片得到電阻率 (9.54 × 10-4 )、載子遷移率 (2.28 cm2 V-1 s-1) 和載子濃度 (5.75 × 104 cm-1),最後利用紫外/可見光吸收光譜儀 (UV-vis)、光致螢光系統 (PL) 和紫外光光電子能譜儀 (UPS) 做光學性質分析, 得到高光吸收係數 (5.75 104 cm-1) 的MoO2薄膜。


    Molybdenum disulfide (MoS2) and molybdenum dioxide (MoO2) were successfully synthesized and characterized in this work. The molybdenum disulfide film was deposited by magnetron sputter, and then annealed with sulfur powder at the temperature of 550 °C to improve the absorption coefficient and crystallinity. The morphology and microstructure of the MoS2 film was characterized by scanning electron microscope (SEM) and high resolution transmission electron microscopy (HR-TEM). The crystallinity of MoS2 film was also measured by Grazing Incidence X-ray diffraction spectroscopy (GIXRD). The composition of MoS2 film was measured by X-ray Photoelectron Spectroscopy (XPS). The band-gap and absorption spectra were analyzed using UV-visible optical absorption spectroscopy. This work successfully obtained a MoS2 film with high absorption coefficient (5.5 104 cm-1).
    The molybdenum dioxide film was grown by two-step chemical vapor deposition. Molybdenum trioxide was synthesized in the first step, and then reacted with sulfur atmosphere in step two. The morphology and microstructure of the MoO2 film was characterized by scanning electron microscope (SEM). The crystallinity of MoO2 film was measured by Grazing Incidence X-ray diffraction spectroscopy (GIXRD). The composition of MoO2 film was measured by X-ray Photoelectron Spectroscopy (XPS). The electric properties of MoO2 film were measured by Hall effect system. The band-gap and absorption spectra were analyzed by using UV-visible optical absorption spectroscopy, Photoluminescence (PL) and Ultraviolet Photoemission Spectrospocy (UPS). This study successfully obtained the molybdenum dioxide with low resistivity (9.54 × 10-4 ), high carrier mobility (2.28 cm2 V-1 s-1), high carrier concentration (4.5 × 1021 cm-3), and high absorption coefficient (5.75 × 104 cm-1).

    摘要 I Abstract III 誌謝 V 目錄 X 圖目錄 XII 表目錄 XVI 第一章 緒論 1 第二章 文獻回顧 3 2.1二硫化鉬的基本性質、合成方法及應用 3 2.2二氧化鉬的基本性質、合成方法及應用 5 第三章 實驗流程與方法 7 3.1 二硫化鉬 (MoS2) 薄膜製備 9 3.2 二氧化鉬 (MoO2) 奈米結構和薄膜製備 11 3.3 實驗儀器簡介 14 3.3.1 化學氣相沉積爐管系統 14 3.3.2 場發射掃描電子顯微鏡、能量散佈分析儀 16 3.3.3 高解析度穿透式電子顯微鏡、能量散佈分析儀 18 3.3.4 聚焦離子束顯微系統 20 3.3.5 薄膜厚度輪廓量測儀 21 3.3.6 霍爾效應量測系統 22 3.3.7 X-ray光電子能譜 23 3.3.8 紫外/可見光吸收光譜儀 24 3.3.9 光致螢光系統 25 3.3.10 低掠角X光繞射分析儀 26 3.3.11 紫外光光電子能譜儀 26 第四章 結果與討論 27 4.1 MoS2薄膜成長及分析 27 4.1.1 MoS2之SEM表面形貌以及EDX之分析 28 4.1.2 MoS2之GIXRD結晶性分析 33 4.1.3 MoS2之TEM結構及結晶性分析 35 4.1.4 MoS2之X-ray光電子能譜 (XPS) 分析 37 4.1.5 MoS2之光學性質分析 39 4.2 MoO2奈米結構和薄膜成長及分析 44 4.2.1 MoO2之GIXRD結晶性分析 46 4.2.2 MoO2之X-ray光電子能譜 (XPS) 分析 48 4.2.3 MoO2之SEM表面形貌之分析 50 4.2.4 MoO3:In及MoO2:In之電性分析 52 4.2.5 MoO2之光學性質分析 56 第五章 結論 60 第六章 未來展望 62 參考文獻 63

    [1] MSDS 安全資訊, CAS No. 7439-98-7
    [2] website: http://www.webelements.com/molybdenum/geology.html
    [3] W. KOEHLER, U.S. Patent No. 1,714,565, 1927
    [4] S. Ghatak, A. N. Pal, A. Ghosh, The Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors, ACS Nano, 5, 2011, 7707–7712
    [5] G. Seifert, H. Terrones, M. Terrones, G .Jungnickel and T. Frauenheim, Structure and Electronic Properties of MoS2 Nanotubes, PHYSICAL REVIEW LETTERS, 85, 2000, 1
    [6] S.W. Liu, Y. Divayana, X.W. Sun, Y. Wanf, K.S. Leck, and H.V. Demir, Improved performance of organic light-emitting diodes with MoO3 interlayer by oblique angle deposition, Optical Express, 19, 2011, 4513-4520
    [7] N. Tokmoldin, N. Griffiths, D. D. C. Bradley, S. A. Haque, A Hybrid Inorganic–Organic Semiconductor Light-Emitting Diode Using ZrO2 as an Electron-Injection Layer, Advanced Materials, 21, 2009, 3475-3478.
    [8] E. R. Braithwaite, J. Haber, Molydenum: An Outline of its Chemistry and Uses, Elsevier Science Ltd, Studies in organic chemistry ,19, 1994, 1-680.
    [9] D. W. Zhao, P. Liu, X. W. Sun, S. T. Tan, L. Ke, and A. K.K. Kyaw, An inverted organic solar cell with an ultrathin Ca elec-tron-transporting layer and MoO3 hole-transporting layer, Applied Physics Letters, 95, 2009, 153304
    [10] J. Song, et al. , Mater Res Bull, 40, 2005, 1751
    [11] M. F Oscar, L.Scudiero, H.Su, x-ray diffraction and photoelectron spectroscopy studies of MoO2 as catalyst for partial oxidation of isooctane, Surface Science, 603, 2009, 2327-2332
    [12] O. Marin-Flores, T. Turba, C. Ellefson, L. Scudiero, J. Breit, MG. Ha. Norton, Nanoparticle Molybdenum Dioxide: A New Alternative Catalytic Material for Hydrogen Production via Partial Oxidation of Jet-A Fuels, J Nanoelectron Opt, 2, 2010, 110-114
    [13] S. Tangestaninejad, M. Moghadam, I. Mohantmadpoor-Baltork, K. Ghani, MoO(2)(acac)(2)supported on silica functionalized imidazole as a highly efficient and reusable catalyst for alkene epoxidation with tert-BuOOH, 11, 2008, 270-274
    [14] L. Q. Mai, Y. Gao, J. G. Guan, B. Hi, L. Xu, W. Jin, Int J Electrochem Science, 3, 2008, 755-761
    [15] W. Chen, L. Q. Mai, Y. Y. Qi, W. Jin, T. Hu, W. L. Guo, Y. Dai, E. D. Gu, One-dimensional oxide nanomaterials through rheological self-assembling, H.P. Ceramics IV, 336-338, 2007, 2128-2133
    [16] Yi. Ding, W. Yong, Y. L. Min, W. Zhang, S. H. Yu, General synthesis and phase control of metal molybdate hydrates MMoO(4)centerdot nH(2)O (M = Co, Ni, Mn, n=0, 3/4, 1) nano=microcrystals by hy-drothermal approach: Magnetic, photocatalytic, and electrochemical properties, Inorg Chem, 47, 2008, 7813-7823
    [17] JCPDs card No.24-0513
    [18] Yu. L, Zhang. P, Du. Z, Tribological Behavior and Structural Change of the LB Film of MoS2 Nanoparticles Coated with Dialkyldithiophosphate, Surf. Coat. Technol., 130, 2000, 110–115
    [19] Tenne. R, Advances in the Synthesis of Inorganic Nanotubes and Fullerene-Like Nanoparticles, Angew. Chem. Int. Ed., 42, 2003, 5124–5132
    [20] Liu. Y, Liu. S, Hild. W, Luo. J, Schaefer. J.A, Friction and Adhesion in Boundary Lubrication Measured by Microtribometers, Tribol. Int., 39, 2006, 1674-1681
    [21] X. Zhou, D. Wu, H. Shi, X. Fu, Z. Hu, X. Wang, F. Yan, Study on the Tribological Properties of Surfactant-Modified MoS2 Micrometer Spheres as an Additive in Liquid Paraffin. Tribol. Int., 40, 2007, 863-868
    [22] L. Rapoport, N. Fleischer, R. Tenne, Applications of WS2 (MoS2) In-organic Nanotubes and Fullerene-like Nanoparticles for Solid Lu-brication and for Structural Nanocomposites, J. Mater. Chem., 15, 2005, 1782–1788
    [23] V. A. Dusheiko, M. S. Lipkin, Synthesis of Sulfide Cathodic Materi-als and Study of Their physicochemical properties and electrochem-ical activity, Journal of Power Source, 54, 1995, 264-267
    [24] C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, H. Liu, Synthesis of Molyb-denum Disulfide (MoS2) for Lithium Ion Battery Applications, Mater. Res. Bull., 44, 2009, 1811–1815.
    [25] D. Nicosia, R. Prins, The Effect of Glycol on Phosphate-Doped CoMo/Al2O3 Hydrotreating Catalysts, J. Catal, 229, 2005, 424–438.
    [26] T. A. Pecoraro, R. R. Chianelli, Hydrodesulfurization Catalysis by Transition Metal Sulfides, J. Catal, 67, 1981, 430–445.
    [27] M. Breysse, C. Geantet, P. Afanasiev, J. Blanchard, M. Vrinat, Recent Studies on the Preparation, Activation and Design of Active Phases and Supports of Hydrotreating Catalysts, Catal, 130, 2008, 3–13.
    [28] N. Dinter, M. Rusanen, P. Raybaud, S. Kasztelan, P.D. Silva, H. Toulhoat, Temperature-Programed Reduction of Unpromoted MoS2-Based Hydrodesulfurization Catalysts: Experiments and Ki-netic Modeling from First Principles, J. Catal, 267, 2009, 67–77.
    [29] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, NATURE NANOTECHNOLOGY, 6, 2011, 147-150
    [30] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Two-dimensional atomic crystals, Proc. Natl Acad, 102, 2005, 10451–10453
    [31] K. M. Garadkar, A. A. Patil, P. P. Hankare, P. A. Chate, D. J. Sathe, S. D. Delekar, MoS2 : Preparation and their characterization, Journal of Alloys and Compounds, 487, 2009, 786–789
    [32] K. K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li, Y. Shi, H. Zhang, C. S. Lai, L. J. Li, Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates, Nano Lett,12, 2012, 1538 – 1544
    [33] S. Balendhran, J. Z. Ou, M. Bhaskaran, S.Sriram, S. Ippolito, Z. Vasic, E.Kats, S. Bhargava, S. Zhuiykov, K. Kalantar-zadeh, Atom-ically thin layers of MoS2 via a two step thermal evapora-tion–exfoliation method, Nanoscale, 4, 2012, 461–466
    [34] M.A. Baker, R. Gilmore, C. Lenardi, W. Gissler, XPS investigation of preferential sputtering of S from MoS and2 determination of MoSx stoichiometry from Mo and S peak positions, Appplied Sur-face Science, 150, 1999, 255-262
    [35] JCPDs card No.86-0135
    [36] A. Benadda, A. Katrib, A. Barama, Hydroisomerization of n-heptane and dehydration of 2-propanol on MoO2(Hx)ac. Catalysts, Appl Catal A Gen, 251, 2003, 93-105
    [37] Y. Shi, B. Guo, SA. Corr, Q. Shi, YS. Hu, KR. Heier, L. Chen, R. Seshadri, GD. Stucky, Ordered Mesoporous Metallie MoO2 Materialswith Highly Reversible Lithium Storage Capacity, Nano Lett, 9, 2009, 3215-4220
    [38] O. Marin-Flores, T. Turba, C. Ellefson, K. Wang, J. Breit, J. Ahn, Norton MG, Nanoparticle Molybdenum Dioxide: A New Alternative Catalytic Material for Hydrogen Production via Partial Oxidation of Jet-A Fuels, Journal of nanoelectrinics and optoelectronics, 98, 2010, 110-114
    [39] G. Hagg, A. Magneli, Studies on the Hecahonal Tungsten Bronzes of Potassium Rubidium and Cesion, Acta Chem. Sand, 7, 1944, 315-324
    [40] A. Magneli, G. Andersson, On the MoO2 Structure Type, Acta Chem Scand, 9, 1955, 1378-1381
    [41] B. O. Marinder, A. Magneli, Metal-Metal Bonding in Some Transi-tion Metal Dioxides, Acta Chem Scand, 11, 1957, 1635-1640
    [42] E. Lalik, WIF. David, P. Barnes, JFC. Turner, Mechansims of Reduc-tion of MoO3 to MoO2 Reconciled, J Phys Chem B, 105, 2001, 9153-9156
    [43] Q. S. Gao, L. C. Yang, X. C. Lu, J. J . Mao, Y. H. Zhang, Y. P. Wu, Y. Tang, Synthsis characterization and lithium-storage performance of MoO2/carbon hybrid nanowires, JOURNAL OF MATERIALS CHEMISTRY, 20, 2010, 2807-2812
    [44] P. J. Dietrich, T. Wu, A. Sumer, M. C. Akatay, B. R. Fingland, N. Guo, J. A. Dumesic, C. L. Marshall, E. Stach, J. Jellinek , W. N. Delgass, F. H. Ribeiro, J. T. Miller, Aqueous Phase Glycerol Re-forming by PtMo Bimetallic Nano-Particle Catalyst: Product Selec-tivity and Structural Characterization, Top Catal , 55, 2012, 53–69
    [45] H. Y. Chen, H. C. Su, C.H. Chen, K.L. Liu, C. M. Tsai, S. J. Yen T. R. Yew, Indium-doped molybdenum oxide as a new p-type transparent conductive oxide, J. Mater. Chem., 21, 2011 5745-5752
    [46] P. A. Spevack, N. S. McIntyre, A Raman and XPS Investigation of Supported Molybdenum Oxide Thin Films Reactions with Hydrogen Sulfide, J. Phys. Chem. 97, 1993, 1036-1039
    [47] P. J. Dietrich, R. J. L. Lapidus, T. Wu, A. Sumer, M. C. Akatay, B. R. Fingland, N. Guo, J. A. Dumesic, C. L. Marshall, E. Stach, J. Jellinek, W. N. Delgass, F. H. Ribeiro, J. T. Miller, Aqueous Phase Glycerol Reforming by PtMo Bimetallic Nano-Particle Catalyst: Product Selectivity and Structural Characterization, Top Catal, 55, 2012, 54-69
    [48] G. Nagaraju, C. N. Tharamani, G. T. Chandrappa, J. Livage, Hydro-thermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate, Nanoscale Res Lett , 2, 2007, 461–468
    [49] J.V. Pimentela, T. Polcara, A. Cavaleiro, Structural, mechanical and tribological properties of Mo–S–C solid lubricant coating, Surface & Coatings Technology, 205, 2011, 3274–3279
    [50] D.K. Schroder, Book: Semiconductor Material and Device Charac-terization
    [51] W.S. Choi, XPS Study of MoO3 Interlayer Between Aluminum Elec-trode and Inkjet-Printed Zinc Tin Oxide for Thin-Film Transistor, Trans. Electr. Electron. Mater, 12, 2011, 267-269
    [52] D. O. Scanlon, G. W. Watson, D. J. Payne, G. R. Atkinson, R. G. Egdell, D. S. L. Law, Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2, J. Phys. Chem. C, 114, 2010, 4636-4645
    [53] E. Preisler, Semiconductor properties of manganese dioxide, Journal of Applied Electrochemistry, 6, 1976, 311-320

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE