簡易檢索 / 詳目顯示

研究生: 李亞儒
論文名稱: 利用小波變換方式在耦合映射網格網絡系統週期性邊界條件下求其同步化
The Wavelet Transform Method for Synchronization on Networks of Coupled Map Lattices with Periodic Boundary Conditions
指導教授: 李金龍
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 34
中文關鍵詞: 小波變換週期性邊界條件耦合映射網格同步化區間
外文關鍵詞: wavelet transform method, periodic boundary conditions, coupled map lattices, synchronous intervals
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在文獻[26]中,為了提升混沌系統中多種同步化的橫向穩定性,因此選擇較有效能的方法-小波變換。而本文主在討論:在廣義的週期性邊界條件下,耦合映射網格(CMLs)的連結矩陣。進而研究小波變換理論在耦合映射網格中的混沌同步化現象。為達此目的,首先,須提出精確的特徵曲線公式。第二,為呈現出不同的同步化區間,可任意選取參數a,b,c。


    The wavelet transform method [26] is an effective tool to enhance the transverse stability of the synchronous manifold of a chaotic system. A generalized periodic boundary conditions is discussed for the coupling matrix of coupled map lattices (CMLs). The theory of wavelet ransform method on chaotic synchronization of coupled map lattices was studied. First, the explicitly eigencurves formula is presented. Second, the parameters a, b, and c are numerically chosen to show some different synchronous intervals.

    1 Introduction 1 2 Preliminary 9 3 Main Results 13 4 Conclusions 26 5 References 27 6 Appendix 30

    [1] C. Juang, T. M. Huang, J. Juang, and W. W. Lin, A synchronization scheme using self-pulsating laser diodes in optical communication, IEEE J. Quantum Electron., 36 (2000), pp. 300–304.
    [2] C. W. Wu, Global synchronization in coupled map lattices, in Proc. ISCAS, 1998, vol. 3, pp. 302-305
    [3] C. W. Wu, Synchronization in Coupled Chaotic Circuits and Systems,World Scientific Series on Nonlinear Science Series A 41, World Scientific, Singapore, 2002.
    [4] C. W. Wu, Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling, IEEE Trans. Circuits Systems I Fund. Theory Appl., 50 (2003), pp. 294–297.
    [5] Daubechies, I., The lectures on wavelets, CBMS-NSF Series in Appleied Mathematics, SIAM, Philadelphia(1992).
    [6] G. Hu, J. Yang, and W. Liu, Instability and controllability of linearly coupled oscillators: Eigenvalue analysis, Phys. Rev. E (3), 58 (1998), pp. 4440–4453.
    [7] G. Rangarajan and M. DIng, Stability of synchronized chaos in coupled dynamical systems, Phys. Lett. A, vol. 296, no. 4/5, pp. 204-209, Apr. 2002.
    [8] Juang, C., Li, C.-L. Liang, Y. H. Liang and Juang, J. , Wavelet transform method for coupled map lattices, IEEE Trans. on Circuits and Systems -I : Regular Papers, vol. 56, no. 4, pp. 840–845,(2009).
    [9] J. F. Heagy, L. M. Pecora, and T. L. Carroll, Short wavelength bifurcations and size instabilities in coupled oscillator systems, Phys. Rev. Lett., 74 (1995), pp. 4185–4188.
    [10] J. Juang and Y.-Liang, synchronous chaos in coupled map lattices with general connectivity topology, SIAM J. Apple. Dyn. Syst., vol. 7, no. 3, pp. 755-765, 2008.
    [11] J. Juang, C. L. Li, and Y. H. Liang, Global synchronization in lattices of coupled chaotic systems, Chaos, 17 (2007), 033111.
    [12] Juang, J., and Li, C.-L., Eigenvalue problems and their application to the wavelet method of chaotic control, J. Math. Phys., vol. 52, no. 1, pp. 012701. 14, (2011).
    [13] Juang, J., and Li, C.-L., The theory of wavelet transform method on chaotic synchronization of coupled map lattices, J. Math. Phys., vol. 52, no. 1, pp. 012701. 14, (2011).
    [14] Juang, J., Li, C.-L., Chang, J. W., Perturbed block circulant matrices and their application to the wavelet method of chaotic control, J. Math. Phys., vol. 47, no. 47, pp. 122702. 11, (2006).
    [15] K. Pyragas, Weak and strong synchronization of chaotic, Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 54, no. 5, pp. 4508-4511, Nov. 1996.
    [16] K. S. Fink, G. Johnson, T. Carroll, D. Mar, and L. Pecora, Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays, Phys. Rev. E (3), 61 (2000),pp. 5080–5090.
    [17] L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), pp. 2109–2112.
    [18] M. Barahona and L. M. Pecora, Synchronization in small-world systems, Phys. Rev. Lett., 89 (2002),054101.
    [19] M. d. S. Vieira and A. J. Lichtenberg, Nonuiversality of weak synchronization in chaotic systems, Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 56, no. 4, pp. 3741-3744, Oct. 1997.
    [20] M. Hasler, Y. Maisatrenko, and O. Popovych, Simple example of partial synchronization of chaotic system, Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Top., vol. 58, no. 5, pp. 6843-6846, Nov. 1998.
    [21] M. Zhan, G. Hu, and J. Yang, Synchronization of chaos in coupled systems, Phys. Rev. E (3), 62(2000), pp. 2963–2966.
    [22] P. M. Gade and R. E. Amritkar, Spatially periodic orbits in coupled-map lattices, Phys. Rev. E (3),47 (1993), pp. 143–154.
    [23] P. M. Gade, H. A. Cerdeira, and R. Ramaswamy, Coupled maps on trees, Phys. Rev. E (3), 52 (1995), pp. 2478–2485.
    [24] P. M. Gade, Synchronization of oscillators with random nonlocal connectivity, Phys. Rev. E (3), 54 (1996), pp. 64–70.
    [25] Shieh, S. F., Wang, Y. Q., Wei, G. W., and Lai, C. H., Mathematical analysis of the wavelet method of chaos control, J. Math. Phys., vol. 47, no. 8, pp. 082701. 10, (2006).
    [26] Wei, G. W., Zhan, M., and Lai, C. H., Tailoring wavelet for chaos contral, Phys. Rev. Lett., vol. 89, no. 28, pp. 284103. 4, (2002).
    [27] X. Li and G. Chen, Synchronization and desynchronization of complex dynamical networks: An engineering view point, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 11, pp. 1381-1390, Nov. 2003.
    [28] Y. Chen, G. Rangarajan, and M. Ding, General stability analysis of synchronized dynamics in coupled systems, Phys. Rev. E (3), 67 (2003), 026209.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE