簡易檢索 / 詳目顯示

研究生: 林士偉
Lin, Shih-Wei
論文名稱: 利用異向性磁阻於磁場的量測與應用
Utilization of Anisotropic Magnetoresistance in Magnetic Field Measurement and Application
指導教授: 方維倫
Fang, Wei-Leun
口試委員: 賴梅鳳
Lai, Mei-Feng
李昇憲
Li, Sheng-Shian
鄒慶福
Tsou, Ching-Fu
洪啟琮
Hong, Chi-Tsung
張恒中
Chang, Heng-Chung
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 203
中文關鍵詞: 異向性磁阻磁導引結構電鍍磁感測器觸覺感測器
外文關鍵詞: anisotropic magnetoresistance, flux guide, electroplating, magnetic sensor, tactile sensor
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 異向性磁阻 (Anisotropy Magnetoresistance, AMR) 為常見的同平面方向磁感測器材料,因為形狀異向性的原因導致其不利於量測出平面方向磁場。本研究延續團隊先前所開發的技術,使用鎳金屬的柱狀微結構作為磁導引結構,將出平面磁場轉換成同平面磁場,藉此實現出平面方向量測。透過整合微機電技術中常使用的厚光阻製程與電鍍製程,取代現有組裝方式以達到精準對位。在本研究中,首先針對磁阻晶片的設計提供參考指南,透過調變不同尺寸的方式,找出磁導引與磁阻薄膜之間的磁場關聯性。對於導線間隙為70 µm的繞折式異向性磁阻感測器而言,隨著磁導引與磁阻薄膜之間的距離從20 µm減小到0 µm時,感測靈敏度可提高4.6倍。此外,當磁導引固定在繞折式異向性磁阻感測器的導線間隙正中間時,隨著間隙從70 µm減小到50 µm,靈敏度提高5.6倍。接著,本論文第二部分則進一步開發新穎的三軸磁力計,由兩個現有的用於同平面磁場感測的純AMR薄膜與一個新穎的孔雀形狀佈線設計所組成,該孔雀形狀佈線放置具有香菇形結構陣列作為增強磁場收集的磁導引結構強化訊號效果。並且透過徑向對稱設計,孔雀形狀的AMR薄膜在不同方位的同平面磁場下都能提供相似的訊號大小,因此能夠實現出平面和同平面感測訊號的解耦合。量測結果表明,所提出的孔雀形狀AMR薄膜在不同方位角的同平面磁場下都提供相同的電阻變化。出平面磁場的訊號靈敏度為-2×10-4 %/Gauss。最後,本研究延伸異向性磁阻的應用,提出了一種新型觸覺力感測器,其由異向性結構作為感測單元、高分子材料作為彈簧,以及剛性磁體作為觸覺凸塊(接觸界面)所組成。當施加正向力時,會使高分子材料變形並造成磁鐵的位移,改變AMR薄膜接收到的磁力線密度,進而導致AMR的電阻發生變化。測量結果證明了所提出的AMR力感測器設計的可行性,在圓柱形磁鐵下的AMR 力感測器的靈敏度範圍為-2.6×10-3 至 -6.4×10-3 %/N,而長方形磁鐵所提供的靈敏度範圍為-2.4×10-3 至 -8.9×10-3 %/N。


    Anisotropy Magnetoresistance (AMR) is a common material used for in-plane magnetic sensors. This study integrates the columnar microstructure of nickel materials as a magnetic guide structure to convert out-of-plane magnetic fields into in-plane magnetic fields, thereby achieving out-of-plane direction measurements. By integrating thick photoresist and electroplating processes commonly used in MEMS technology, the current assembly methods are replaced to achieve precise alignment. This research first develops a design guideline for the chip, finding the relationship between the magnetic guide and the AMR thin film by modulating different dimensions. For a serpentine AMR sensor with a wire gap of 70 µm, the sensor sensitivity can be increased by 4.6 times as the distance between the magnetic guide and the AMR thin film is reduced from 20 µm to 0 µm. Additionally, when the magnetic guide is fixed at the center of the wire gap of the serpentine AMR sensor, the sensitivity can be increased by 5.6 times as the gap is reduced from 70 µm to 50 µm.
    Next, the second part of this thesis further develops a novel triaxial magnetometer, composed of two existing pure AMR films for in-plane magnetic field sensing and a new peacock-shaped wiring design. This peacock-shaped wiring is placed with a mushroom-shaped structure array as a magnetic guide structure to enhance the signal effect of magnetic field collection. Due to the radially symmetrical design, the peacock-shaped AMR film can provide similar signal magnitudes under in-plane magnetic fields in different orientations, thus easily achieving decoupling of out-of-plane and in-plane sensing signals. Measurement results show that the proposed peacock-shaped AMR film provides the same resistance change under in-plane magnetic fields at different azimuth angles. The signal sensitivity for the out-of-plane magnetic field is -2 × 10-4 %/Gauss.
    Finally, this study extends the application of anisotropy magnetoresistance by proposing a novel tactile force sensor, composed of an anisotropic structure as the sensing element, a polymer package as the spring, and a rigid magnet as the tactile bump (contact interface). When a normal force is applied, it deforms the polymer and causes displacement of the magnet, changing the magnetic flux density received by the AMR film, thereby leading to a change in AMR resistance. Measurement results demonstrate the feasibility of the proposed AMR force sensor design, with the sensitivity range of the AMR force sensor under a cylindrical magnet being -2.6 × 10-3 to -6.4 × 10-3 %/N, and under a rectangular magnet being -2.4 × 10-3 to -8.9 × 10-3 %/N.

    摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XXI 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-2-1 異向性磁阻基礎原理與薄膜性質 4 1-2-2 同平面異向性磁阻感測與設計 7 1-2-3 出平面方向之磁阻感測器設計 9 1-2-4 觸覺感測器文獻 12 1-3 研究動機 15 1-4 研究目標與全文架構 16 第二章 磁導引位置對AMR感測器出平面磁場感測之影響 34 2-1 元件性能設計 34 2-2 製程流程 44 2-3 元件性能量測 48 2-4 小結 54 第三章 使用孔雀形狀異向性磁阻和香菇形磁導引陣列實現三軸磁感測器 84 3-1 元件設計概念 84 3-2 晶片製程與結果 88 3-3 元件性能量測 92 3-4 小結 96 第四章 AMR式觸覺力感測器 118 4-1 設計概念 118 4-2 製程流程與結果 120 4-3 元件性能量測 122 4-4 小結 124 第五章 結論以及未來工作 142 5-1 結論 142 5-2 未來研究方向 144 5-2-1 磁力計性能提升 144 5-2-2 三軸磁力計 147 5-2-3 觸覺感測器 148 5-2-4 其他 150 參考文獻 167 論文發表 179 附錄A 異向性磁阻元件之感測原理 182 附錄B 磁場集中器 187 附錄C 藉由調變磁導引的面積比觀察磁阻變化率 192

    [1] G. W. Barber and A. S. Arrott, “History and magnetics of compass adjusting,” IEEE Transactions on Magnetics, Vol. 24, No. 6, pp. 2883–2885, 1988.
    [2] H. Bray, “You are here: from the compass to GPS, the history and future of how we find ourselves,” Choice Reviews Online, Vol. 52, No. 02, pp. 52-0800, 2014.
    [3] J. Lenz and S. Edelstein, “Magnetic sensors and their applications,“ IEEE sensor journal, Vol. 6, pp. 631–649, 2006.
    [4] J. Lenz, “A review of magnetic sensors,“ Proc. IEEE, Vol. 78, pp. 973–989, 1990.
    [5] M.A. Khan, J. Sun, B. Li, A. Przybysz, and J. Kosel, “Magnetic sensors-a review and recent technologies,“ Eng. Res. Express, Vol. 3, 022005, 2021.
    [6] STMicroelectronics, https://www.st.com/content/st_com/en.html
    [7] AsahiKASEI, https://www.akm.com/
    [8] D. Mapps, “Magnetoresistive sensors,“ Sensors and Actuators A: Physical, Vol. 59, pp. 9-19, 1997.
    [9] J. Clarke, M. Hatridge, and M. Mößle, “SQUID-Detected Magnetic Resonance Imaging in Microtesla Fields,” Annual Review of Biomedical Engineering, Vol. 9, No. 1, pp. 389–413, 2007.
    [10] J. Clarke, “Squid Fundamentals,” in Springer eBooks, 1996, pp. 1–62.
    [11] M.Crescentini, M.Biondi,A. Romani,M. Tartagni, and E. Sangiorgi, ”Optimum design rules for CMOS hall sensors,” Sensors, Vol. 17, pp. 765, 2017.
    [12] H. Blanchard, F. De Montmollin, J. Hubin, and R. S. Popovic, “Highly sensitive Hall sensor in CMOS technology,” Sensors and Actuators a Physical, Vol. 82, No. 1–3, pp. 144–148, 2000.
    [13] B. A. Kaidarova et al., “Flexible Hall sensor made of laser-scribed graphene,” Npj Flexible Electronics, Vol. 5, No. 1, 2021.
    [14] H. Xu et al., “Batch-fabricated high-performance graphene Hall elements,” Scientific Reports, Vol. 3, No. 1, 2013.
    [15] N. Haned, “Nano-tesla magnetic field magnetometry using an InGaAs–AlGaAs–GaAs 2DEG Hall sensor,” Sensors and Actuators a Physical, Vol. 102, No. 3, pp. 216-222, 2003.
    [16] D. Kriegner et al., “Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe,” Nature Communications, Vol. 7, No. 1, 2016.
    [17] M. El-Tahawy et al., “Anisotropic magnetoresistance (AMR) of cobalt: hcp-Co vs. fcc-Co,” Journal of Magnetism and Magnetic Materials, Vol. 560, p. 169660, 2022.
    [18] W. Ai et al., “Observation of giant room-temperature anisotropic magnetoresistance in the topological insulator β-Ag2Te,” Nature Communications, Vol. 15, No. 1, 2024.
    [19] C. Wang et al., “Highly Sensitive Magnetic Sensor Based on Anisotropic Magnetoresistance Effect,” IEEE Transactions on Magnetics, Vol. 54, No. 11, pp. 1–3, 2018.
    [20] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, “Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices,” Physical review letters, Vol. 61, pp. 2472, 1988.
    [21] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Physical Review. B, Condensed Matter, Vol. 39, No. 7, pp. 4828–4830, 1989.
    [22] M. N. Baibich et al., “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Physical Review Letters, Vol. 61, No. 21, pp. 2472–2475, 1988.
    [23] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, “Giant magnetoresistive in soft ferromagnetic multilayers,” Physical Review. B, Condensed Matter, Vol. 43, No. 1, pp. 1297–1300, 1991.
    [24] J. Mathon and A. Umerski, “Theory of tunneling magnetoresistance in a junction with a nonmagnetic metallic interlayer,” Physical Review. B, Condensed Matter, Vol. 60, No. 2, pp. 1117–1121, 1999.
    [25] S. Yuasa and D. D. Djayaprawira, “Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier,” Journal of Physics. D, Applied Physics, Vol. 40, No. 21, pp. R337–R354, 2007.
    [26] S. S. P. Parkin et al., “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers,” Nature Materials, Vol. 3, No. 12, pp. 862–867, 2004.
    [27] W. Y. Kim and K. S. Kim, “Tuning Molecular Orbitals in Molecular Electronics and Spintronics,” Accounts of Chemical Research, Vol. 43, No. 1, pp. 111–120, 2009.
    [28] S. Yuasa and D. D. Djayaprawira, “Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier,” Journal of Physics. D, Applied Physics, Vol. 40, No. 21, pp. R337–R354, 2007.
    [29] S. Andreev, J. Koprinarova, and P. Dimitrova, “Magnetic Properties of Thin Film Amr Sensor Structures Implemented by Magnetization After Annealing,” Journal of Optoelectronics and Advanced Materials, Vol. 7, pp. 317-320, 2005.
    [30] P. P. Freitas, R. Ferreira, S. Cardoso, and F. Cardoso, ” Magnetoresistive sensors,” J. Phys.: Condens. Matter, Vol. Vol. 19, pp. 165221, 2007.
    [31] W. Thomson, “On the electrodynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and iron,” Proc. Roy. Soc. London, Vol. 8, pp. 546-550, 1857.
    [32] T. R. Mcguire and R. I. Potter, “Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys,” IEEE Transactions on Magnetics, Vol. 11, pp. 1018-1037, 1975.
    [33] J. Smit, “Magnetoresistance of ferromagnetic metals and alloys at low temperatures,” Physica, Vol. 17, No. 6, pp. 612–627, 1951.
    [34] M. Kateb and S. Ingvarsson, “Thickness-dependent magnetic and magnetoresistance properties of permalloy prepared by field assisted tilt sputtering,” 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 2017, pp. 1-5
    [35] M. A. Akhter, D. J. Mapps, Y. Q. M. Tan, A. Petford-Long, and R. Doole, “Thickness and grain-size dependence of the coercivity in permalloy thin films,” Journal of Applied Physics, Vol. 81, No. 8, pp. 4122–4124, 1997.
    [36] G. Masciocchi et al., “Optimization of Permalloy Properties for Magnetic Field Sensors Using He+ Irradiation,” Physical Review Applied, Vol. 20, No. 1, 2023.
    [37] J. Albrecht, S. Carl, and R. Schneider, “Magnetoresistive sensors for nondestructive evaluation,” Proc. 10th SPIE Int. Symp. Nondestruct. Eval. Health Monit. Diagn., Vol. 5770, pp. 1-13, 2003.
    [38] X. Fan et al., “Magnetic field-dependent shape anisotropy in small patterned films studied using rotating magnetoresistance,” Scientific Reports, Vol. 5, No. 1, 2015.
    [39] L. Moos, K. K. Nielsen, K. Engelbrecht, and C. R. H. Bahl, ” Experimental investigation of the effect of thermal hysteresis in first order material MnFe (P, As) applied in an AMR device,” International journal of refrigeration, Vol. 37, pp. 303-306, 2014.
    [40] H. Kuru, H. Kockar, M. Alper, and O. Karaagac, ”Growth of binary Ni–Fe films: Characterisations at low and high potential levels,” Journal of Magnetism and Magnetic Materials, Vol. 377, pp. 59-64, 2015.
    [41] S. Andreev, J. Koprinarova, and P. Dimitrova, “Magnetic Properties of Thin Film Amr Sensor Structures Implemented by Magnetization After Annealing,” Journal of Optoelectronics and Advanced Materials, Vol. 7, pp. 317-320, 2005.
    [42] G. Masciocchi et al., “Optimization of Permalloy Properties for Magnetic Field Sensors Using He+ Irradiation,” Physical Review Applied, Vol. 20, No. 1, 2023.
    [43] L. Ding et al., “Enhancement of the magnetic field sensitivity in Al2O3 encapsulated NiFe films with anisotropic magnetoresistance,” Applied Physics Letters, Vol. 94, No. 16, 2009.
    [44] H. Funaki, S. Okamoto, O. K. O. Kitakami, and Y. S. Y. Shimada, “Improvement in Magnetoresistance of Very Thin Permalloy Films by Post-Annealing,” Japanese Journal of Applied Physics, Vol. 33, No. 9B, p. L1304, 1994.
    [45] R. S. Popovic, J. A. Flanagan, and P. A. Besse, “The future of magnetic sensors,” Sensor and Actuators: A, Vol. 56, pp. 39-55, 1996.
    [46] K. Kuijk, W. van Gestel, and F. Gorter, “The barber pole, a linear magnetoresistive head,” IEEE Transactions on Magnetics, Vol. 11, pp. 1215 - 1217, 1975.
    [47] D. J. Mapps, Y. Q. Ma, and M. A. Akhter, ”Optimisation of material and structure for a switched-bias magnetoresistive sensor,” Sensors and Actuators, Vol. 81, pp. 60-63, 2000.
    [48] L. K. Quynh, B. D. Tu, N. T. Thuy, D. Q. Viet, N. H. Duc, A. T. Phung, and D.T. Huong Giang, ”Meander anisotropic magnetoresistance bridge geomagnetic sensors,” Journal of Science: Advanced Materials and Devices, Vol. 4, pp. 327-332, 2019.
    [49] F. C. S. da Silva, S.T. Halloran, L. Yuan, and D. P. Pappas, “A z-component magnetoresistive sensor,” Appl. Phys. Lett., Vol. 92, 142502, 2008.
    [50] M. Suzuki, T. Fukutani, T. Hirata, S. Aoyagi, S. Shingubara, H. Tajiri, Y. Yoshikawa, and T. Nagahata, ”Triaxis Magnetoresistive (Mr) Sensor Using Permalloy Plate of Distorting Magnetic Field,” IEEE MEMS, Hong Kong, China, January, 2010, pp. 671-674.
    [51] W.-M. Lai, F.-M. Hsu, W.-L. Sung, R.-S. Chen, and W. Fang, “Monolithic Integration of Micro Magnetic Pillar Array with Anisotropic Magneto-Resistive (AMR) Structure for Out-Of-Plane Magnetic Field Detection”, IEEE MEMS, Estoril, January 18-22, 2015, pp. 901-904.
    [52] Z.-H. Liu, S.-W. Lin, Y.-C. Lee, M.-C. Cheng, and W. Fang, “Ni mushroom array to enhance out-of-plane magnetic field sensitivity of anisotropic magnetoresistance sensor,” IEEE MEMS, Tokyo, Japan, 2022, pp. 951-954.
    [53] J. Dargahi, M. Parameswaran, and S. Payandeh, “A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments,” Journal of Microelectromechanical Systems, Vol. 9, No. 3, pp. 329–335, 2000.
    [54] R. Scaffaro, A. Maio, and M. C. Citarrella, “Ionic tactile sensors as promising biomaterials for artificial skin: Review of latest advances and future perspectives,” European Polymer Journal, Vol. 151, p. 110421, 2021.
    [55] P. Roberts, M. Zadan, and C. Majidi, “Soft Tactile Sensing Skins for Robotics,” Current Robotics Reports, Vol. 2, No. 3, pp. 343–354, 2021.
    [56] S. Pyo, J. Lee, K. Bae, S. Sim, and J. Kim, “Recent Progress in Flexible Tactile Sensors for Human‐Interactive Systems: From Sensors to Advanced Applications (Adv. Mater. 47/2021),” Advanced Materials, Vol. 33, No. 47, 2021.
    [57] S. -K. Yeh, M. -L. Hsieh, and W. Fang, “CMOS Based Tactile Force Sensor: A Review,” IEEE Sensors Journal, Vol. 21, No. 11, pp. 12563-12577, 2021.
    [58] R. Kilaru, Z. Celik-Butler, D. P. Butler, and I. E. Gonenli, “NiCr MEMS Tactile Sensors Embedded in Polyimide Toward Smart Skin,” Journal of Microelectromechanical Systems, Vol. 22, No. 2, pp. 349–355, 2013.
    [59] S. Pyo et al., “Development of a flexible three-axis tactile sensor based on screen-printed carbon nanotube-polymer composite,” Journal of Micromechanics and Microengineering, Vol. 24, No. 7, p. 075012, 2014.
    [60] X. Sun et al., "Development of a Flexible Tactile Sensor Array for Three-Dimensional Force Detection with High Sensitivity," 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 2019, pp. 2476-2479.
    [61] G. Liang, Y. Wang, D. Mei, K. Xi, and Z. Chen, “Flexible Capacitive Tactile Sensor Array With Truncated Pyramids as Dielectric Layer for Three-Axis Force Measurement,” Journal of Microelectromechanical Systems, Vol. 24, No. 5, pp. 1510–1519, 2015.
    [62] T. Li et al., “Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer,” Small, Vol. 12, no. 36, pp. 5042–5048, 2016.
    [63] Y. Wan et al., “A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High‐Aspect‐Ratio Microstructures,” Advanced Electronic Materials, Vol. 4, No. 4, 2018.
    [64] Y. Zhu, X. Chen, K. Chu, X. Wang, Z. Hu, and H. Su, “Carbon Black/PDMS Based Flexible Capacitive Tactile Sensor for Multi-Directional Force Sensing,” Sensors, Vol. 22, No. 2, p. 628, 2022.
    [65] P. Yu, W. Liu, C. Gu, X. Cheng, and X. Fu, “Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement,” Sensors, Vol. 16, No. 6, p. 819, 2016.
    [66] K. K. Sappati and S. Bhadra, “Flexible Piezoelectric 0–3 PZT-PDMS Thin Film for Tactile Sensing,” IEEE Sensors Journal, Vol. 20, No. 9, pp. 4610–4617, 2020.
    [67] Y. Kumaresan, S. Ma, D. Shakthivel and R. Dahiya, "AlN Ultra-Thin Chips Based Flexible Piezoelectric Tactile Sensors," 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, United Kingdom, 2021, pp. 1-4.
    [68] W. Lin, B. Wang, G. Peng, Y. Shan, H. Hu, and Z. Yang, “Skin‐Inspired Piezoelectric Tactile Sensor Array with Crosstalk‐Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli,” Advanced Science, Vol. 8, No. 3, 2021.
    [69] H. Zhao, K. O’Brien, S. Li, and R. F. Shepherd, “Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides,” Science Robotics, Vol. 1, No. 1, 2016.
    [70] W. Li, J. Konstantinova, Y. Noh, Z. Ma, A. Alomainy and K. Althoefer, "An Elastomer-based Flexible Optical Force and Tactile Sensor," 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea (South), 2019, pp. 361-366.
    [71] R. Ahmadi, M. Packirisamy, J. Dargahi, and R. Cecere, “Discretely Loaded Beam-Type Optical Fiber Tactile Sensor for Tissue Manipulation and Palpation in Minimally Invasive Robotic Surgery,” IEEE Sensors Journal, Vol. 12, No. 1, pp. 22–32, 2012.
    [72] C. Jiang, Z. Zhang, J. Pan, Y. Wang, L. Zhang, and L. Tong, “Finger‐Skin‐Inspired Flexible Optical Sensor for Force Sensing and Slip Detection in Robotic Grasping,” Advanced Materials Technologies, Vol. 6, No. 10, 2021.
    [73] A. Hirohata et al., “Review on spintronics: Principles and device applications,” Journal of Magnetism and Magnetic Materials, Vol. 509, p. 166711, 2020.
    [74] C. Cheng, X. Sun, N. Xue, T. Li, and C. Liu, “Recent Progress in Technologies for Tactile Sensors,” Sensors, Vol. 18, No. 4, p. 948, 2018.
    [75] H. Wang and L. Beccai, “Design and Characterization of Tri-axis Soft Inductive Tactile Sensors,” IEEE Sensors Journal, Vol. 18, pp. 7793-7801, 2018.
    [76] H. Wang, G. d. Boer, J. Kow, M. Ghajari, A. Alazmani, R. Hewson, and P Culmer, “A Low-cost Soft Tactile Sensing Array using 3D Hall Sensors,” Procedia Engineering, Vol. 168, pp. 650-653, 2016.
    [77] S. Tumanski, ”Thin Film Magnetiresistive Sensors,” 1st Ed., U.K., CRC Press, 2001.
    [78] M. N. Francis, ”The electrical conductivity of transition metals,” Proc. R. Soc. Lond. A, Vol. 153, pp 699–717, 1936.
    [79] J. Smit, ”Magnetoresistance of ferromagnetic metals and alloys at low temperatures,” Physica, Vol. 17, pp 612-627, 1951.
    [80] P. Leroy, C. Coillot, A. F. Roux, and G. M. Chanteur, ”High Magnetic Field Amplification for Improving the Sensitivity of Hall Sensors,” IEEE Sensors Journal, Vol. 6, pp.707-713, 2006.
    [81] M. Sato and Y. Ishii, ”Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder,” Journal of Applied Physics, Vol. 66, pp 983-985, 1989.
    [82] J. A. OsaoRN, ”Demagnetizing Factors of the General Ellipsoid,” Physical review, Vol. 67, pp 351-357, 1945.
    [83] L. Sileo, M.T. Todaro, V. Tasco, M. De Vittorio, and A. Passaseo, “Fully integrated three- axis Hall magnetic sensor based on micromachined structures,” Microelectron. Eng., Vol. 87, pp. 1217-1219, 2010.
    [84] J.-T. Jeng, C.-C. Lu, H.-W. Ku, B.-R. Huang, M.-H. Chia, and X. T. Trinh, “Three-axis micofluxgate with a fluxguide,” IEEE Trans. Magn., Vol. 55, No. 7, 2002304, 2019.
    [85] S. K. Bagaria, C. Periasamy, “Magnetic properties of electroformed Ni and Ni-Fe for micromagnetic MEMS applications,” J. Supercond. Nov. Magn., Vol. 28, pp. 3357-3363, 2015.
    [86] F. E. Rasmussen, J. T. Ravnkilde, P. T. Tang, O. Hansen, and S. Bouwstra, “Electroplating and characterization of cobalt–nickel–iron and nickel–iron for magnetic microsystems applications,” Sens. Actuators A Phys., Vol. 92, No. 1-3, pp. 242–248, 2001.
    [87] J. K. Luo, D. P. Chu, A. J. Flewitt, S. M. Spearing, N. A. Fleck, and W. I. Milne, ”Uniformity Control of Ni Thin-Film Microstructures Deposited by Through-Mask Plating,” Journal of The Electrochemical Society, Vol. 152, pp. 36-41, 2005.
    [88] M. Glickman, P. Tseng, J. Harrison, T. Niblock, I. B. Goldberg, and J. W. Judy, “High-Performance Lateral-Actuating Magnetic MEMS Switch,” Journal of Microelectromechanical Systems, Vol. 20, No. 4, pp. 842–851, 2011.
    [89] F. E. Rasmussen, J. T. Ravnkilde, P. T. Tang, O. Hansen, and S. Bouwstra, “Electroplating and characterization of cobalt–nickel–iron and nickel–iron for magnetic microsystems applications,” Sensors and Actuators a Physical, Vol. 92, No. 1–3, pp. 242–248, 2001.
    [90] Y. Sverdlov et al., “The electrodeposition of cobalt–nickel–iron high aspect ratio thick film structures for magnetic MEMS applications,” Microelectronic Engineering, Vol. 76, No. 1–4, pp. 258–265, 2004.

    QR CODE