簡易檢索 / 詳目顯示

研究生: 彭柏皓
Peng, Po-Hao
論文名稱: HeH+中紅外飽和吸收光譜量測
Saturated Absorption Spectrum Measurement of HeH+ in the Mid-Infrared
指導教授: 施宙聰
Shy, Jow-Tsong
口試委員: 周哲仲
Chou, Che-Chung
王立邦
Wang, Li-Bang
施宙聰
Shy, Jow-Tsong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 60
中文關鍵詞: 飽和吸收光譜中紅外光碘分子穩頻雷射可調式偏差鎖頻系統光學參量振盪器
外文關鍵詞: Saturated Absorption Spectrum, Mid-Infrared, Iodine Stabilized Laser, Tunable Offset locking System, Optical Parametric Oscillator
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們建立了一套高精密與高準確中紅外飽和吸收光譜儀,其包含碘分子穩頻雷射系統、可調式偏差鎖頻系統、光學參量振盪器 (Optical Parametric Oscillator, OPO)、光頻梳、偏差鎖頻系統與延伸負輝光放電管,光源可以產生2.6 μm~4 μm的中紅外光,閒波功率可達1.5 W以上。
    頻率標準建立在碘分子穩頻系統上,再將OPO的泵浦光利用可調式偏差鎖頻系統鎖在碘分子穩頻系統,而OPO的信號波則用偏差鎖頻系統鎖在光頻梳上,利用調整OPO的泵浦光可以精準的改變OPO的閒波。
    我們重架了碘分子穩頻系統,並重新設計可調式偏差鎖頻系統的線路以及相位延遲產生器,藉由改善OPO的泵浦光來提升閒波的精準度,其不準度可在8 kHz以下,且鎖頻時間可至12小時以上。我們亦增加了延伸負輝光放電管的磁場,並將OPO在放電管中的光改成Double Pass,以提高訊噪比。
    我們用此套系統量測HeH+在基頻帶P(4)~R(4)共9條譜線,P(3)~R(3)的準確度皆在1 MHz以內,與其他團隊的誤差在1 MHz以下,而P(4)與R(4)的準確度則在5 MHz以內。在改善系統後,我們將P(1)的訊噪比提升至1.7倍,且延長積分時間還可再提升訊噪比。


    We built a high precision and high accuracy mid-IR saturated absorption spectrometer, including iodine stabilized laser system, tunable offset locking system, optical parametric oscillator (OPO), optical frequency comb, offset locking system and extended negative glow discharge tube. With the light source, we can generate mid-IR laser with wavelength from 2.6 μm to 4 μm. The power of the idler wave can output over 1.5 W.
    We set the frequency standards on the iodine stabilized laser system, lock pump wave of OPO on the iodine stabilized laser system by tunable offset locking system, and lock signal wave of OPO on an optical frequency comb by offset locking system. So we can precise adjustment frequency of the idler wave with tune frequency of pump wave.
    We rebuild the iodine stabilized laser system, and redesign circuits of the tunable offset locking system and its phase delay generator. Because improve the pump wave of OPO can promotion precision of the idler wave, and let its uncertainty claim to be low 8kHz. Locking time can increase to over 12 hours. We also increase magnetic field and absorption path in extended negative glow discharge tube to promotion signal-to-noise ratio.
    We used this system to measurement 9 transitions of HeH+ in fundamental band. Among them, uncertainty of P(3) to R(3) is within 1 MHz, and uncertainty of P(4) and R(4) is within 5 MHz. After improving system, we increase the signal-to-noise ratio of P(1) to 1.7 times. If we extend the integration time, can increase SNR more.

    第一章 導論 1 1.1 研究動機 1 1.2 HeH+之簡介 2 1.3 論文架構 3 第二章 中紅外光源系統 4 2.1 碘分子穩頻雷射系統 (I2-Stabilized Nd:YAG Laser System) 4 2.1.1 碘分子超精細結構 (Hyperfine Structure of Iodine) 5 2.1.2 調制傳遞光譜法 (Modulation Transfer Spectroscopy) 7 2.1.3 碘分子穩頻Nd:YAG雷射 8 2.2 可調式偏差鎖頻系統 (Tunable Offset Locking System) 19 2.2.1 偏差鎖頻系統之原理 19 2.2.2 可調式偏差鎖頻雷射系統 20 2.3 光學參量振盪器 (Optical Parametric Oscillator, OPO) 33 2.3.1 OPO光源系統 33 2.3.2 OPO的調整波長方法 34 2.4 光頻梳系統 (Optical Frequency Comb, OFC) 37 2.4.1 光頻梳原理 37 2.4.2 光頻梳之偏差鎖頻系統 38 2.5 高解析度中紅外光源系統 39 第三章 絕對頻率量測 41 3.1 延伸負輝光放電管 (Extended Negative Glow Discharge Tube) 41 3.1.1 輝光放電 (Glow Discharge) 41 3.1.2 延伸負輝光區域 (Extended Negative Glow Region) 43 3.1.3 延伸負輝光放電管 (Extended Negative Glow Discharge Tube) 43 3.2 中紅外飽和吸收光譜儀架設 45 3.3 4HeH+的精準頻率量測 46 3.3.1 HeH+的在放電電漿中的形成 46 3.3.2 4HeH+頻率量測 47 3.3.3 改進實驗架設後的4HeH+頻率量測 52 第四章 結論與未來展望 56 4.1 結論 56 4.2 未來展望 57 參考目錄 58

    [1] T. R. Hogness and E. G. Lunn, "The ionization of hydrogen by electron impact as interpreted by positive ray analysis," Phys. Rev., vol. 26, p. 44, 1925.
    [2] D. E. Tolliver, G. A. Kyrala, and W. H. Wing, "Observation of the infrared spectrum of the helium-hydride molecular ion 4HeH+," Phys. Rev. Lett., vol. 43, p. 1719, 1979.
    [3] A. Carrington, J. Buttenshaw, R. A. Kennedy, and T. P. Softley, "Observation of bound to quasibound vibration-rotation transitions in the HeH+ ion," Mol. Phys., vol. 44, p. 1233, 1981.
    [4] P. Bernath and T. Amano, "Detection of the infrared fundamental band of HeH+," Phys. Rev. Lett., vol. 48, p. 20, 1982.
    [5] M. W. Crofton, R. S. Altman, N. N. Haese, and T. Oka, "Infrared spectra of 4HeH+, 4HeD+,3HeH+, and 3HeD+," J. Chem. Phys., vol. 91, p. 5882, 1989.
    [6] D. J. Liu, W. C. Ho, and T. Oka, "Rotational spectroscopy of molecular ions using diode lasers," J. Chem. Phys., vol. 87, p. 2442, 1987.
    [7] F. Matsushima, T. Oka, and K. Takagi, "Observation of the rotational spectra of 4HeH+, 4HeD+,3HeH+, and 3HeD+," Phys. Rev. Lett., vol. 78, p. 1664, 1997.
    [8] Z. Liu and P. B. Davies, "Infrared laser absorption spectroscopy of rotational and vibration rotational transitions of HeH+ up to the dissociation threshold," J. Chem. Phys., vol. 107, p. 337, 1997.
    [9] Z. Liu and P. B. Davies, "Measurement of the pure rotational quasibound spectrum of HeH+ in a laboratory plasma by direct laser absorption," Phys. Rev. Lett., vol. 79, p. 2779, 1997.
    [10] A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, "Communication: High precision sub-Doppler infrared spectroscopy of the HeH+ ion," J. Chem. Phys., vol. 141, pp. 101101-1, 2014.
    [11] F. L. Hong, et al., "Interferometric gauge block measurement with 633-nm He-Ne and 1,064-nm Nd:YAG lasers," Proc. SPIE, vol. 3477, 1998.
    [12] P. Cordiale, G. Galzerano, and H. Schnatz, "International comparison of two iodine-stabilized frequency-doubled Nd:YAG lasers at λ = 532 nm," Metrologia, vol. 37, p. 177, 2000.
    [13] L. Robertsson, et al., "International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000," Metrologia, vol. 38, p. 567, 2001.
    [14] F. L. Hong, et al., "Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2," J. Opt. Soc. Am., vol. 18, p. 1416, 2001.
    [15] H. M. Fang, Studies of laser stabilization using molecular iodine. Ph. D. Dissertation, National Chiao Tung University, 2004.
    [16] J. L. Hall, et al., "Optical heterodyne saturation spectroscopy," Appl. Phys. Lett., p. 680, 1981.
    [17] J. H. Shirley, "Modulation transfer processes in optical heterodyne saturation spectroscopy," Opt. Lett., vol. 7, p. 537, 1982.
    [18] E. Jaatinen, D. J. Hopper, and J. Back, Meas. Sci. Technol, vol. 20, p. 025302, 2009.
    [19] L. J. Gillespie and L. H. D. Fraser, "The normal vapor pressure of crystalline iodine," J. Am. Chem. Soc., vol. 58, p. 2260, 1936.
    [20] T. J. Quinn, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards," Metrologia, vol. 40, p. 103, 2003.
    [21] J. W. Lin, Sub-mHz-coherence optical offset locking for high-resolution cesium 6S-6D hyperfine transitions. Master Thesis, National Central University, 2016.
    [22] D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett., vol. 22, p. 1553, 1997.
    [23] J. L. Peng and R. H. Shu, "Determination of absolute mode number using two mode-locked laser combs in optical frequency metrology," Opt. Express, vol. 15, p. 4485, 2008.
    [24] F. C. D. Lucia, et al., J. Chem. Phys., vol. 78, p. 2312, 1983.
    [25] B. Chapman, Glow discharge processes: sputtering and plasma etching, Wiley, 1980.
    [26] J. J. Thomson and G. P. Thomson, Conductivity of Electricity Through Gas, Cambridge University, 1982.
    [27] T. Amano, and A. Maeda, "Double-modulation submillimeter-wave spectroscopy of HOC+ in the ν2 excited vibrational state," J. Mol. Spectrosc., vol. 203, pp. 140-144, 2000.
    [28] D. M. Bishop and L. M. Cheung, "A theoretical investigation of HeH+," J. Mol., vol. 75, p. 462, 1979.
    [29] W. Roberge and A. Dalgarno, "The formation and destruction of HeH+ in astrophysical plasmas," Astrophys. J., vol. 255, p. 489, 1982.
    [30] R. Johnsen and M. A. Biondi, "Measurements of ion-molecule reactions of He+, H+, and HeH+ with H2 and D2," J. Chem. Phys., vol. 61, p. 2112, 1974.
    [31] G. Bekefi, Principles of laser plasmas, Wiley, 1976.
    [32] R. H. Neynaber, G. D. Magnuson, and J. K. Layton, "Formation of HeH+ from low-energy collisions," J. Chem. Phys., vol. 57, p. 5128, 1972.
    [33] W. A. Chupka and M. E. Russell, "Photoionization study of ion-molecule reactions in mixtures of hydrogen and rare gases," J. Chem. Phys., vol. 49, p. 5426, 1968.

    QR CODE