簡易檢索 / 詳目顯示

研究生: 賴明宏
Lai, Ming Hung
論文名稱: 拘束調整修正模態超音波致動器之設計與應用
Design and Application of a Constraint-Tuning Modified-Mode Ultrasonic Actuator
指導教授: 歐陽敏盛
周懷樸
口試委員: 陳建祥
李明義
溫富亮
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 104
中文關鍵詞: 拘束調整修正模態超音波致動器入平面模態順滑模態控制器
外文關鍵詞: constraint-tuning modified mode, ultrasonic actuator, in-plane mode, sliding-mode controller
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出具有拘束調整修正模態(Constraint-Tuning Modified-Mode: CTMM)機制的單片壓電振動子,並設計一新型薄盤超音波致動器推動線性平台加以驗證之。透過具模態參與係數的模態擴充技術及拘束波Green Function的理論推導,獲得內部拘束薄圓板修正模態的估測公式,可用來解釋此新型致動器的作動機制。將正確分佈的四只螺絲施加於單片壓電薄盤上,超音波修正模態的致動機制會被產生及傳播。入平面振動模態(In-plane vibration modes)可被施加在壓電振動子上的螺釘拘束修正及調整。為了實現此致動器雙向平衡的結構力,導入結構阻尼概念,利用有限元素分析軟體ANSYS的自然模態、強迫諧振及阻抗比較來設計拘束分佈,解決理論模態加入多重拘束不易獲得數值解的困擾。因此,選擇兩個不同修正模態可與壓電材料產生機電共振者,做為此致動器的驅動模態,以提高機電轉換效率。將所設計的致動器及單相雙頻LC諧振驅動電路,取代推動光學台車的DC馬達及其齒輪組並保留原光碟機控制器,輔助光學致動器尋軌及讀取光碟片資料與播放影片均可獲得想要的功能。另依據施加在CTMM超音波致動之驅動電壓及預力的變化,探究其機電共振頻率偏移及推動平台時不工作區(dead zone)響應的非線性現象,這些非線性行為可藉由具輸出biases的PID型順滑模態控制器(SMC)抑制補償。使用系統鑑別法獲得線性平台的近似二階模型,提供PID-based SMC等效控制項的設計。透過模型誤差的估測,切換控制項的設計可被使用來補償在機電耦合下振動子共振頻率偏移的特性。於線性平台軌跡追蹤實驗中,使用目標命令塑形函數(shapping function)來匹配系統的響應速度,實驗結果顯示PID-based SMC控制器使所提之CTMM致動器雙向移動線性滑軌位置具有抗雜訊能力,定位解析度可達微米等級,其行程可達mm級之長程控制的能力,驗證了CTMM致動器的理論、設計與實現的一致性及可控性。此CTMM超音波致動器厚度僅3 mm,採用此型致動器可協助開發須薄形化的致動裝置。


    Using a piezoelectric unimorph vibrator with constraint-tuning modified-mode (CTMM) mechanism, a novel design of a thin-disc ultrasonic actuator was developed and validated to drive a linear slider. The theoretical estimation of in-plane wave propagation on a thin disc was introduced to explain the novel actuating mechanism, via a modal expansion technique, modal participation factors and derived green functions of planer waves. Applying four screws at the exact distribution of angles on the thin-disc vibrator, the actuating mechanism of ultrasonic modified modes is generated and propagated. The in-plane vibration modes could be tuned by these desired screw constraints on the piezoelectric vibrator. To implement the equilibrium structure force in bilateral directions, natural and forced harmonic analysis as well as impedance comparison with structural damping of FEM software ANSYS are also introduced into the constrained design. Hence, computing complexities in mathmatics to solve these multiple constraints in a thin disc could be avoided. There are two kind of modified modes chosen at the different resonant frequencies within the electromechanical coupling of piezoelectric material to pursue more efficiency in energy conversion. Experimental results have demonstrated that the proposed ultrasonic actuator with an adapted single-phase, bi-frequency LC resonant driving circuit is able to directly drive the optical sled in rightward and leftward movements to help the optical actuator to retirve the data in the optical storage dick. Based upon the driving variation of voltage amplitude and the preload on the CTMM ultrasonic actuator, the nonlinear phenomena, such as the frequency shifting in electromechanical resonance and the dead zone in moving response, could be suppressed completely by the PID-based SMC controller with output biases. Using system identification technique, an approximate second-order model of the linear stage could be obtained for the equivalent control term of the PID-based SMC controller. Through an estimated model error, the design of the switching control term was used to compensate for the shifting property of resonant frequencies under electromechanical coupling. A target-command-shaping function matched the responding speed of the system during tracking experiments. The SMC controller has the capacity for noise rejection to control the slider positioning in bilateral tracking motions pushed by the CTMM actuator. Its resolution is sufficient to approach the accuracy within a micrometer level and the controllable proficiency in the long moving distance of millimeters. Therefore, the theory, design, and implementation for CTMM actuators have the excellent agreement and controllability. A CTMM actuator, with the thickness of only 3 mm, is very suitable to develop the thin and slender driving mechanism.

    中 文 摘 要 II 英 文 摘 要 III 致 謝 IV 目 錄 V 圖 目 錄 VIII 表 目 錄 XI 第一章 緒 論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 文獻回顧 3 1.4 論文大綱 9 第二章 內部拘束薄圓板的入平面振動估測 11 2.1 自由無拘束薄圓板的入平面振動理論 11 2.1.1 二維薄圓板入平面振動理論 11 2.1.2有限元素分析對薄圓板入平面振動理論的驗證比較 13 2.2 內部拘束薄圓板的入平面振動估測 16 2.2.1點支撐分佈 20 2.2.2四點群支撐分佈 21 2.2.3八點群支撐拘束 23 2.2.4小圓環鉗住支撐 24 第三章 CTMM振動子之設計與特性分析 27 3.1 Unimorph壓電振動子有限元素分析模型 27 3.1.1 自然模態分析(Modal Analysis) 29 3.1.2 施加外力的HARMONIC分析 29 3.2 致動元件設計與模態分析 30 3.2.1 CTMM致動元件的設計 30 3.2.2 CTMM致動元件的模態分析 32 3.2.3 CTMM致動元件的模態調整機制 36 3.3 CTMM致動元件的特性分析 38 3.3.1 阻抗分析 38 3.3.2 結構力分析 41 3.3.3 位移軌跡分析 44 第四章 CTMM致動器的性能評估 46 4.1 CTMM超音波致動器推動光學平台的機構設計 46 4.1.1 致動器與推動光學平台機構 46 4.1.2 致動器推動光學平台動作原理 48 4.1.3致動器推動光學平台的特性量測架設 48 4.2 CTMM超音波致動器推動光學台車的性能量測 50 4.2.1預力及驅動頻率對平台速度的特性 50 4.2.2 CTMM超音波致動器的負載特性 52 4.3光學台車的實驗 55 4.3.1原光學台車馬達的性能量測 55 4.3.2光學台車CTMM致動器驅動電路的設計 56 4.3.3 光碟機尋軌機構的修改 58 4.3.4 光碟機系統整合測試 60 第五章 CTMM致動器非線性行為與控制器設計 65 5.1 CTMM致動器非線性行為 65 5.1.1 CTMM超音波致動器推動線性滑軌機構 65 5.1.2 超音波機電共振致動的非線性特性 66 5.1.3 CTMM超音波致動的開回路特性 72 5.2 滑動模式控制器的設計 73 5.2.1 驅動電路的設計 73 5.2.2 控制用的模型鑑別 75 5.2.3 PID型滑動模式控制器之設計 77 5.3 線性滑軌控制性能評估 79 5.3.1 系統模型估測 79 5.3.2 控制器的模擬 80 5.3.3 控制實驗 86 第六章 結論與未來研究發展 91 6.1 結論 91 6.2 未來研究發展 92 參 考 文 獻 93 附件A:入平面薄圓板模態理論Matlab Codes 99 附件B:開回路系統鑑別Matlab Codes 103

    [1]A. L. W. Williams and W. J. Brown, "Piezoelectric Motor," US Patent 2,439,499, 1942.
    [2]M. E. Archangelskij, "Acoustic Motor," Acoustic Journal, vol. 9, p. 275, 1963.
    [3]V. V. Lavrinenko, "Piezoelectric Motor," Soviet Patent 217509, 1964.
    [4]H. V. Barth, "Ultrasonic Driven Motor," IBM Technical Disclosure Bulletin, vol. 16, p. 2263, 1973.
    [5]T. Sashida, "Trial Construction and Operation of an Utrasonic Vibration Driven Motor," Uhyo-butsuri, vol. 51, pp. 713-720, 1982, (in Japanese).
    [6]T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors. Oxford: Clarendon Press, 1993.
    [7]S. Ueha, Y.Tomikawa, M. Kurosawa, and N. Nakaura, Ultrasonic Motors - Theory and Applications. New York: Oxford University Press Inc., 1993.
    [8]K. Uchino, Piezoelectric Actuators and Ultrasonic Motors. Massachusetts: Kluwer Academic Publishers, 1997.
    [9]K. Uchino, "Piezoelectric Ultrasonic Motors: Overview," Smart Materials and Structures, vol. 7, pp. 273-285, 1998.
    [10]M. S. Ouyang and F. L. Wen, "Thin-disc Piezoelectric Actuating Ultrasonic Motor," United States Patent US20030006674A1, 2003.
    [11]F. L. Wen, C. Y. Yen, and M. S. Ouyang, "Thin-disk Piezoceramic Ultrasonic Motor. Part I: Design and Performance Evaluation," Ultrasonics, vol. 41, pp. 437-450, 2003.
    [12]K. T. Chang and M. S. Ouyang, "Rotary Ultrasonic Motor Driven by a Disk-shaped Utrasonic Actuator," IEEE Transactions on Industrial Electronics, vol. 53, pp. 831-837, 2006.
    [13]F. L. Wen and C. Y. Yen, "Design and Dynamic Evaluation for a Linear Ultrasonic Stage Using theThin-disc Structure Actuator," Ultrasonics, vol. 47, pp. 23-31, Dec 2007.
    [14]歐陽敏盛, 陳瑞凱, 蔡汶釧, 賴明宏, 顏吉永, 郭惠民, "新型微放電加工系統的設計與研製," presented at the 第六屆奈米工程暨微系統技術研討會、第八屆微系統科技協會年會暨國科會微機電系統成果發表會之奈微米工程聯合研討會, 台南成大, 2002.
    [15]蔡汶釧, "以放電波形鑑別為控制基礎之微放電加工系統的設計與研製," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2002.
    [16]歐陽敏盛, 賴明宏, 黃晉興, 牟善琦, 黃昱先, 謝禮忠, 李仁傑, "新型超音波致動光碟機尋軌系統之研製(I)," 行政院國家科學委員會補助專題研究期中報告 NSC91-2218-E-007-037, 2002.
    [17]歐陽敏盛, 賴明宏, 謝禮忠, "新型超音波致動光碟機尋軌系統之研製(II)," 行政院國家科學委員會補助專題研究成果報告 NSC92-2212-E-007-043, 2003.
    [18]謝禮忠, "碟型超音波致動器在光碟機尋軌系統之應用," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2004.
    [19]Y. S. Lan, C. H. Huang, C. L. Chang, M. S. Ouyang, Y. H. Chung, T. R. Jeng, and J. J. Ju, "Driving Mechanism for Optical Head of Optical Disc Driver," United States Patent US 20030189889A1, 2003.
    [20]Y. S. Lan, C. H. Huang, C. L. Chang, M. S. Ouyang, Y. C. Huang, H. C. Yu, C. Y. Huang, T. R. Jeng, and J. J. Ju, "Piezoelectric Ultrasonic Motor with Multi-layer Thin Disks " United States Patent US006717331B1, 2004.
    [21]M. H. Lai, M. S. Ouyang, and F. L. Wen, "Theoretical Estimation and Modeling for Constraint-Tuning Ultrasonic Actuator," Journal of Mechanics, vol. 28, pp. 7-18, 2012.
    [22]M. H. Lai, F. L. Wen, Y. L. Shen, and M. S. Ouyang, "System Configuration and Evaluation for Optical Sled Drive Using Constraint-Tuning Ultrasonic Actuator," Applied Mechanics and Materials, vol. 87, pp. 1-13, 2011.
    [23]M. H. Lai and M. S. Ouyang, "Nonlinear Control for a CTMM Ultrasonic Actuating Linear Stage," Advanced Science Letters, pp. 1-6, 2012, submitted.
    [24]V. Snitka, V. Mizariene, and D. Zukauskas, "The Status of Ultrasonic Motors in the Former Soviet Union," Ultrasonics, vol. 34, pp. 247-250, 1996.
    [25]T. Sashida, "Motor Device Utilizing Ultrasonic Oscillation," United States Patent 4,562,374, 1985.
    [26]H. Kanazawa, T. Tsukimoto, T. Maeno, and A. Miyake, "Tribology of Ultrasonic Motors," Japanese Journal of Tribology, vol. 38, pp. 315-324, 1993.
    [27]T. Takano and Y. Tomikawa, "Linearly Moving Ultrasonic Motor Using a Multi-mode Vibrator," Japanese Journal of Applied Physics, vol. 28, pp. 164-166, 1989.
    [28]T. Takano, Y. Tomikawa, T. Ogasawara, S. Sugawara, and M. Konno, "Ultrasonic Motors Using Piezoelectric Ceramic Multimode Vibrators," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control vol. 37, pp. 224-229, 1990.
    [29]T. Takano, H. Hirata, and Y. Tomikawa, "Analysis of Nonaxisymmetric Vibration Mode Piezoelectric Annular Plate and Application to an Ultrasonic Motor," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 37, pp. 558-565, 1990.
    [30]L. Lebrun, L. Petit, and P. Gonnard, "Piezoelectric Motor Using a (1, 1) Non-axisymmetric Mode," Ultrasonics, vol. 34, pp. 251-255, 1996.
    [31]T. Takano, Y. Enoki, S. Kitashima, and Y. Tomikawa, "Small-sized Ultrasonic Linear Motor Using Radial and Nonaxisymmetric Vibration Modes of an Annular Plate," in Ultrasonics Symposium, 1998. Proceedings., 1998 IEEE, 1998, pp. 675-678 vol.1.
    [32]N. Lamberti, A. Iula, and M. Pappalardo, "A Piezoelectric Motor Using Flexural Vibration of a Thin Piezoelectric Membrane," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 45, pp. 23-29, 1998.
    [33]R. Carotenuto, N. Lamberti, A. Iula, and M. Pappalardo, "A New Low Voltage Piezoelectric Micromotor Based on Stator Precessional Motion," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 45, pp. 1427-1435, 1998.
    [34]歐陽敏盛, 溫富亮, "壓電軸推式超音波馬達," 中華民國專利, 專利公告號: 548893, 2003.
    [35] F. L. Wen, S. C. Mou, and M. S. Ouyang, "Design and Construction of Shaft-driving Type Piezoceramic Ultrasonic Motor," Ultrasonics, vol. 43, pp. 35-47, Oct 2004.
    [36]陳明男, "缺口式薄盤超音波馬達之設計與分析," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2004.
    [37]林正峰, "超音波風扇之設計與製作," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2005.
    [38]K. Itao and S. H. Crandall, "Natural Modes and Natural Frequencies of Uniform, Circular, Free-Edge Plates," Journal of Applied Mechanics vol. 46, pp. 448-453, 1979.
    [39]A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity. New York: Dover Publications, 1944.
    [40]M. Onoe, "Contour Vibrations of Isotropic Circular Plates," The Journal of the Acoustical Society of America, vol. 28, pp. 1158-1162, 1956.
    [41]R. Holland, "Numerical Studies of Elastic-Disk Contour Modes Lacking Axial Symmetry," The Journal of the Acoustical Society of America, vol. 40, pp. 1051-1057, 1966.
    [42]S. S. H. Chen and T. M. Liu, "Extensional Vibration of Thin Plates of Various Shapes," The Journal of the Acoustical Society of America, vol. 58, pp. 828-831, 1975.
    [43]G. Ambati, J. F. W. Bell, and J. C. K. Sharp, "In-plane Vibrations of Annular Rings," Journal of Sound and Vibration, vol. 47, pp. 415-432, 1976.
    [44]W. Soedel, Vibrations of Shells and Plates. New York: Marcel Dekker, Inc., 1981.
    [45]S. Azimi, "Free Vibration of Circular Plates with Elastic or Rigid Interior Support," Journal of Sound and Vibration, vol. 120, pp. 37-52, 1988.
    [46]S. Azimi, "Axisymmetric Vibration of Point-Supported Circular Plates," Journal of Sound and Vibration, vol. 135, pp. 177-195, 1989.
    [47]R. A. LeClair, "Modal Analysis of Circular Plates with a Free Edge and Three Simple Interior Supports," Journal of Sound and Vibration, vol. 160, pp. 289-300, 1993.
    [48]C. CHI, "Modes of Vibration in a Circular Plate with Three Simple Support Points," AIAA JOURNAL, vol. 10, pp. 142-147, 1972.
    [49]P. Hagedorn and J. Wallaschek, "Travelling Wave Ultrasonic Motors, Part I: Working Principle and Mathematical Modelling of the Stator," Journal Sound and Vibration, vol. 155, pp. 31-46, 1992.
    [50]S. H. Chang and B. C. D. A. S. Am, "Optimization of Asymmetric Bimorphic Disk Transducers," Journal Acoustic Society American, vol. 109, pp. 194-202, 2001.
    [51]Q. Wang, S. T. Quek, C. T. Sun, and X. Liu, "Analysis of Piezoelectric Coupled Circuler Plate," Smart Materials and Structures, vol. 10, pp. 229-239, 2001.
    [52]S. A. N. Prasad, B. V. Sankar, L. N. Cattafesta, S. Horowitz, Q. Gallas, and M. Sheplak, "Two-Port Electroacoustic Model of an Axisymmetric Piezoelectric Composite Plate," presented at the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, 2002.
    [53]H. Allik and T. J. R. Hughes, "Finite Element Method for Piezoelectric Vibration," International Journal for Numerical Methods in Engineering, vol. 2, pp. 151-157, 1970.
    [54]D. F. Ostergaard and T. P. Pawlak, "Three-Dimensional Finite Elements for Analyzing Piezoelectric Structures," in IEEE 1986 Ultrasonics Symposium, 1986, pp. 639-644.
    [55]R. J. Guyan, "Reduction of Stiffness and Mass Matrices," AIAA Journal, vol. 3, p. 380, 1965.
    [56]R. Lerch, "Simulation of Piezoelectric Devices by Two- and Three-dimensional Finite Elements," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control vol. 37, pp. 233-247, 1990.
    [57]N. Guo, P. Cawley, and D. Hitchings, "The Finite Element Analysis of the Vibration Characteristics of Piezoelectric Discs," Journal of Sound and Vibration, vol. 159, pp. 115-138, 1992.
    [58]J. W. Krome and J. Wallaschek, "Influence of Piezoelectric Actuator on the Vibrations of Stator of a Traveling Wave Motor," in Proceedings of IEEE Ultrasonic Symposium, 1995, pp. 413-416.
    [59]L. Yu-Chih and M. Chien-Ching, "Experimental Measurement and Numerical Analysis on Resonant Characteristics of Piezoelectric Disks with Partial Electrode Designs," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 51, pp. 937-947, 2004.
    [60]ANSYS, ANSYS User's Manual Revision 8.0. Canonsburg, Pennsylvania: ANSYS, Inc., 2004.
    [61]C. S. Cai, H. Zheng, S. Khan, and K. C. Hung, "Modeling of Material Damping Properties in ANSYS," in CADFEM Users' Meeting and ANSYS Conference, Friedrichshafen, Germany, 2002, pp. 9-11.
    [62]G. Nader, E. C. N. Silva, and J. C. Adamowski, "Effective Damping Value of Piezoelectric Transducer Determined by Experimental Techniques and Numerical Analysis," in ABCM Symposium Series in Mechatronics, 2004, pp. 271-279.
    [63]H. F. Vinhais, R. C. Ibrahim, and E. C. N. Silvai, "Simulation of a Linear Piezoelectric Motor by Using Finite Element Method," in ABCM Symposium Series in Mechatronics, 2004, pp. 697-706.
    [64]J. Maas, P. Ide, N. Frohleke, and H. Grotstollen, "Simulation Model for Ultrasonic Motors Powered by Resonant Converters," in Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting, IAS '95., Conference Record of the 1995 IEEE, 1995, pp. 111-120 vol.1.
    [65]M. Goldfarb and N. Celanovic, "Modeling Piezoelectric Stack Actuator for Control of Micromanipulation," IEEE Control Systems Magazine, vol. 17, pp. 69-79, 1997.
    [66]J. Maas and H. Grotstollen, "Averaged Model of Inverter-fed Ultrasonic Motors," in Power Electronics Specialists Conference, 1997. PESC '97 Record., 28th Annual IEEE, 1997, pp. 740-746 vol.1.
    [67]T. Schulte and N. Frohleke, "Parameter Identification of Ultrasonic Motors," in Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Conference on, 1999, pp. 97-102.
    [68]J. Maas, T. Schulte, and N. Frohleke, "Model-based Control for Ultrasonic Motors," Mechatronics, IEEE/ASME Transactions on, vol. 5, pp. 165-180, 2000.
    [69]C. Y. Yen, F. L. Wen, and M. S. Ouyang, "Thin-disc Piezoceramic Ultrasonic Motor. Part II: System Construction and Control," Ultrasonics, vol. 41, pp. 451-463, 2003.
    [70]C. Y. Yen, F. L. Wen, and M. S. Ouyang, "Nonlinear Positioning Compensator of a Novel Thin-disc Ultrasonic Motor Using Fuzzy Sliding-mode Control," International Journal of Applied Science and Engineering, vol. 2, pp. 257-276, 2004.
    [71]S. C. Mou and M. S. Ouyang, "Establishing the Dynamic Transfer Function of a Shaft-driving Type Ultrasonic Motor by System Identification," in Proceedings of the 5th World Congress on Intelligent Control and Automation, 2004, pp. 15-19.
    [72]L. Petit, N. Rizet, R. Briot, and P. Gonnard, "Frequency Behaviour and Speed Control of Piezomotors," Sensors and Actuators A: Physical, vol. 80, pp. 45-52, 2000.
    [73]Y. Izuno, R. Takeda, and M. Nakaoka, "New Fuzzy Reasoning-based High-performance Speed/position Servo Control Schemes Incorporating Ultrasonic Motor," Industry Applications, IEEE Transactions on, vol. 28, pp. 613-618, 1992.
    [74]T. Senjyu and K. Uezato, "Adjustable Speed Control of Ultrasonic Motors by Adaptive Control," in Power Electronics Specialists Conference, PESC '94 Record., 25th Annual IEEE, 1994, pp. 1237-1242 vol.2.
    [75]T. Senjyu, S. Yokoda, and K. Uezato, "Position Control of Ultrasonic Motors Using Sliding Mode Control with Multiple Control Inputs," in Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998., Thirteenth Annual, 1998, pp. 597-602 vol.2.
    [76]L. Faa-Jeng, W. Rong-Jong, S. Kuo-Kai, and L. Tsih-Ming, "Recurrent Fuzzy Neural Network Control for Piezoelectric Ceramic Linear Ultrasonic Motor Drive " IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 48, pp. 900-913, 2001.
    [77]T. Senjyu, T. Kashiwagi, and K. Uezato, "Position Control of Ultrasonic Motors Using MRAC and Dead-zone Compensation with Fuzzy Inference," Power Electronics, IEEE Transactions on, vol. 17, pp. 265-272, 2002.
    [78]W. Panusittikorn, L. Min Cheol, and P. I. Ro, "Modeling and Sliding-mode Control of Friction-based Object Transport Using Two-mode Ultrasonic Excitation," Industrial Electronics, IEEE Transactions on, vol. 51, pp. 917-926, 2004.
    [79]H. Lin, W. Wei-Han, C. Yu-Che, and F. Chun-Hsiung, "Self-constructing Recurrent Fuzzy Neural Network for Ultrasonic Motor Drive," in SICE Annual Conference 2010, Proceedings of, 2010, pp. 2576-2583.
    [80]F. L. Wen, C. Y. Yen, and M. S. Ouyang, "Fuzzy Sliding-mode Control for Thin-disc Ultrasonic Motor," in Control Applications, 2004. Proceedings of the 2004 IEEE International Conference on, 2004, pp. 81-86 Vol.1.
    [81]G. Hayward and J. Bennett, "Assessing the Influence of Pillar Aspect Ratio on the Behavior of 1-3 Connectivity Composite Transducers," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 43, pp. 98-108, 1996.
    [82]許佳興, "光碟機轉速與碟片偏擺之控制," 博士, 電機工程學系碩博士班, 國立成功大學, 台南市, 2003.
    [83]K. C. Pohlman, The Compact Disc Handbook. Madison, WI: A-R Editions, Inc., 1992.
    [84]LabVIEW, LabVIEW User Manual. Austin, Texas, USA: National Instruments Corporation, 1998.
    [85]L. Ljung, System Identification Toolbox for Use with MATLAB. Massachusetts: The MathWorks, Inc., 1995.
    [86]J.-J. E. Slotine and W. Li, Applied Nonlinear Control. New Jersey: Prentice Hall, Inc., 1991.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE