簡易檢索 / 詳目顯示

研究生: 江欣怡
論文名稱: 電熱式微致動器之結構設計與熱傳分析
Structural Design and Thermal Analysis of Electro-Thermal Microactuator
指導教授: 江國寧
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2003
畢業學年度: 92
語文別: 中文
論文頁數: 89
中文關鍵詞: 致動器熱致動器
外文關鍵詞: actuator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致動器(Actuator)為微機電系統元件之一,其驅動方式包含靜電驅動、壓電驅動、電磁驅動、電熱驅動及記憶合金。電熱式致動器因具有低操作電壓、製程容易、與積體電路相容等特性,且可應用陣列方式增加其位移與輸出力量。因此,在應用上具有相當大的發展空間。

    本研究提出以彎曲樑結構製作熱致動器,此彎曲樑結構可避免V型致動器水平方向挫曲之缺點。利用有限單元分析軟體ANSYS計算出具有最大位移及微小應力之結構。此最佳尺寸為寬度5μm、曲率半徑3,000μm之彎曲樑。其主要結構材料包含矽基材(Silicon Substrate)、鋁電極(Aluminum Pad)及作為導電熱源之多晶矽(Polysilicon)。熱致動器結構之分析流程以熱力學為基礎,計算出結構正確之熱對流係數,代入有限單元分析軟體ANSYS,求得正確之溫度分佈。再以此溫度分佈作為結構之負載,可得到結構精確之力學行為。以本研究之模擬方法所求得結構之位移與文獻中之量測結果相比較,其誤差在10%以下。


    An actuator is a component of the Micro-Electro-Mechanical System (MEMS). The ways to drive actuators include electrostatic driving, piezoelectricity driving, electromagnetic driving, electro-thermal driving and shape memory alloy. Electro-thermal actuators have such advantages as lower input voltage needed, integrated-circuit manufacturing technology used. Furthermore, both types of actuators can be arrayed to increase its displacement and output force. Therefore, the actuators have sizable development space in application

    We choose curve-beam as the structure, because the structure can avoid horizontal buckle in the V-type actuators. A finite element software (ANSYS) was used to solve the 3D electro-thermo-mechanical problems. We compute the optimum dimension that has the maximum displacement and minimum stress. The optimum structure of actuator is 5μm wide and 3,000μm in radius. The structure materials include Silicon Substrate, Aluminum Pad and Polysilicon. The analysis processes are based on thermodynamics, so we can compute the accurate heat transfer coefficient and get accurate temperature distribution by using ANSYS. Then we can obtain accurate mechanical behaviors, and compare them with the literature. Its error is under 10%.

    目錄 摘要 I Abstract II 目錄 III 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.4 研究目的 6 第二章 分析理論基礎 7 2.1 電熱分析(Electrothermal Analysis) 7 2.1.1 材料電阻值之計算 7 2.1.2 電能-熱能轉換 8 2.2 熱傳分析 10 2.2.1 熱傳導理論 11 2.2.2 熱輻射理論 11 2.2.3 熱對流理論 12 2.3 暫態熱傳分析 14 2.4 熱膨脹變形 17 2.5 應力應變關係 17 2.6 結構之自然頻率 20 2.7 特徵挫曲 21 第三章 研究方法 22 3.1 元件之溫度分佈 22 3.1.1 有限單元模型之建立 23 3.1.2 熱傳之穩態分析 23 3.1.3 熱傳之暫態分析 24 3.2 結構應力應變分析 24 3.2.1 有限單元模型之建立 24 3.2.2 邊界條件與負載 25 3.3 結構之自然頻率 25 3.3.1 有限單元模型之建立 25 3.3.2 邊界條件與負載 25 3.4 特徵挫曲分析 26 3.4.1 有限單元模型之建立 26 3.4.2 邊界條件與負載 26 第四章 製程 27 4.1 製程步驟 27 4.2 製程結果與討論 29 第五章 結果與討論 31 5.1 研究方法之驗證 31 5.2 電熱分析 33 5.2.1 穩態溫度分析結果 33 5.2.2 暫態溫度分析結果 37 5.3 位移與主應力 38 5.4 V形樑與彎曲樑之比較 41 5.5 結構之自然頻率及特徵挫曲 42 5.6 網格密度之影響 42 第六章 結論 44 參考文獻 45 表目錄 表1-1 驅動方式優缺點比較表 49 表1-2 熱致動器之結構分類 49 表3-1 材料參數 50 表3-2 Thermal Properties 51 表5-1 材料之熔點與抗拉強度 51 表5-2 V形致動器結構之材料特性 52 表5-3 V形致動器模擬與實驗值比較表 52 表5-4 寬度5μm彎曲樑分析之結果(3V) 53 表5-5 寬度5μm彎曲樑頂端寬度與z方向面積 53 表5-6 寬度10μm彎曲樑分析之結果(3V) 54 表5-7 寬度10μm彎曲樑頂端寬度與z方向面積 54 表5-8 寬度20μm彎曲樑分析之結果(3V) 55 表5-9 寬度20μm彎曲樑頂端寬度與z方向面積 55 表5-10 彎曲樑與V形樑之比較 56 表5-11 寬度5μm彎曲樑前三個自然頻率及臨界負載 56 表5-12 寬度10μm彎曲樑前三個自然頻率及臨界負載 57 表5-13 寬度20μm彎曲樑前三個自然頻率及臨界負載 57 表5-14 寬度5μm、曲率半徑3,000μm網格切割結果 58 表5-15 寬度10μm、曲率半徑1,200μm網格切割結果 58 表5-16 寬度20μm、曲率半徑500μm網格切割結果 59 圖目錄 圖1-1 彎曲樑之topology結構 59 圖2-1 致動器截面示意圖 60 圖2-2 穩態熱傳導 60 圖2-3 熱傳邊界條件示意圖 61 圖2-4 熱膨脹量為 之結構樑 61 圖2-5 應力示意圖 62 圖2-6 最大正向應力理論 62 圖3-1 結構示意圖 63 圖3-2 熱致動器之三維模型爆炸圖 63 圖3-3 負載與變形挫曲曲線 64 圖4-1 製程光罩 64 圖4-2 光阻製程罩幕對準系統 65 圖4-3 標準清洗槽 65 圖4-4 氧化╱擴散系統 65 圖4-5 電子鎗真空蒸鍍系統 66 圖4-6 低壓化學氣相沉積系統 66 圖4-7 反應性離子蝕刻系統 67 圖4-8 厚度及反射率量測 67 圖4-9 致動器結構製程流程剖面示意圖 68 圖4-10 鋁電極完成圖 70 圖4-11a彎曲樑結構與量尺完成圖 70 圖4-11b彎曲樑結構與量尺完成圖 71 圖4-11c彎曲樑結構與量尺完成圖 71 圖4-12 背後氧化層罩幕完成圖 72 圖4-13 背後蝕刻結果 72 圖4-14 晶片剖面 73 圖4-15 兩步蝕刻過程 73 圖5-1 V形致動器結構 74 圖5-2 V形樑熱致動器之有限單元模型 74 圖5-3 電能與位移之關係 75 圖5-4 模擬數據與樑測結果之比較圖 75 圖5-5 彎曲樑結構模型上視圖 76 圖5-6 寬5μm、曲率半徑500μm溫度分佈(3V) 76 圖5-7 寬5μm、曲率半徑500μm彎曲樑頂端放大圖 77 圖5-8 寬5μm、曲率半徑1,200μm溫度分佈(3V) 77 圖5-9 寬5μm溫度、位移與曲率半徑關係(3V) 78 圖5-10 寬10μm、曲率半徑1,200μm溫度分佈(3V) 78 圖5-11 寬10μm溫度、位移與曲率半徑關係(3V) 79 圖5-12 寬20μm、曲率半徑1,200μm溫度分佈(3V) 79 圖5-13 寬20μm溫度、位移與曲率半徑關係(3V) 80 圖5-14 溫度與曲率半徑之關係(3V) 80 圖5-15 寬5μm、曲率半徑3,000μm溫度與時間關係 81 圖5-16 寬5μm、曲率半徑3,000μm彎曲樑之位移 81 圖5-17 寬5μm、曲率半徑3,000μm彎曲樑主應力分佈 82 圖5-18 寬10μm、曲率半徑1,200μm彎曲樑之位移圖 82 圖5-19 寬10μm、曲率半徑1,200μm彎曲樑主應力分佈 83 圖5-20 寬20μm、曲率半徑500μm彎曲樑之位移 83 圖5-21 寬20μm、曲率半徑500μm彎曲樑主應力分佈 84 圖5-22 位移與曲率半徑之關係(3V) 84 圖5-23 彎曲樑頂端位移與時間之關係圖 85 圖5-24 寬度5μm之V形致動器有限單元模型 85 圖5-25 寬度5μm之V形致樑溫度分佈 86 圖5-26 寬度5μmV形樑之位移 86 圖5-27 寬度5μm之V形樑之主應力 87 圖5-28 彎曲樑之三個模態 87 圖5-29 寬度5μm、曲率半徑3,000μm網格切割結果 88 圖5-30 寬度10μm、曲率半徑1,200μm網格切割結果 88 圖5-31 寬度20μm、曲率半徑500μm網格切割結果 89

    [1] I. J. Busch-Vishniac, “The Case for Magnetically Driven Microactuators,“ Sensors and Actuators, Vol. 33, pp. 207-220, 1992
    [2] K. Minami, S. Kawamura, and M. Esashi, “Fabrication of Distributed Electrostatic Micro Actuator (DEMA),” Journal of Microelectromechanical systems, Vol. 2, No. 3, pp. 121-127, 1993.
    [3] H. Toshiyoshi, H. Fujita, T. Kawai, and T. Ueda, “Piezoelectrically Operated Actuators by Quartz Micromachining for Optical Application,” IEEE Micro Electro Mechanical System Workshop, Fort Lauderdale, FL, USA, pp. 133-138, 1993.
    [4] R. Holzer, I. Shimoyama, and H. Miura, “Lorentz Force Actuation of Flexible Thin-Film Aluminum Microstructures,” IEEE, pp. 156-161, 1995.
    [5] B. Rashidian, and M. G. Allen, “Electrothermal Microactuators Based on Dielectric Loss Heating,” IEEE, pp. 24-29, 1993.
    [6] W. Huang, “On The Selection of Shape Memory Alloys for Actuators,” Materials and Design, Vol. 23, pp. 11-19, 2002.
    [7] H. L. Tuller, “Microactuators,” Kluwer Academic Publishers, 1998.
    [8] W. Riethmuller, and W. Benecke, “ Thermally Excited Silicon Microactuators,“ IEEE Trangsctions on Electron Devices, Vol. 35, No. 6, pp. 758-762, 1998.
    [9] M. Ataka, A. omodaka, N. Takeshima, and H. Fujita, “Fabrication and Operation of Polyimide Bimorph Actuators for a Ciliary Motion System,” Journal of Microelectromechanical systems, Vol. 2, No. 4, pp. 146-150, 1993.
    [10] H. Sehr, A. G. R. Evans, A. Brunnschweiler, G. J Ensell and T. E G Niblock, “Fabrication and Test of Thermal Vertical Bimorph Actuators for Movement in The Wafer Plane,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 306-310, 2001.
    [11] J. W. Judy, T. Tamagawa, and D. L. Polla, “Surface Micromachined Linear Thermal Microactuator,” IEEE, pp. 629-632, 1990.
    [12] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, “Thermo-Magnetic Metal Flexure Actuators,” IEEE, pp. 73-75, 1992
    [13] J. H. Comtois, and Victor M. Bright, “Application for Surface-Micromachined Polysiliccon Thermal Actuators and Arrays,” Sensors and actuators A Vol. 58, pp.19-25, 1997.
    [14] M. Pai, and N. C. Tien, “Low Voltage Electrothermal Vibromotor for Silicon Optical Bench Applications,” Sensors and Actuators A Vol. 83, pp.237-243, 2000.
    [15] C. S. Pan, and W. Hus, “An Electro-Thermally and Laterally Driven Polysilicon Microactuator,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 7-13, 1997
    [16] Q.-A. Huang, and N. K. S. Lee, “Analytical Modeling and Optimization for a Laterally-Driven Polysilicon Thermal Actuator,” Microsystem Technologies, Vol. 5, pp. 133-137, 1999.
    [17] Y. B. Gianchandani, and K. Najafi, “Bent-Beam Strain Sensors,” Journal of Microelectromechanical Systems, Vol. 5, No. 1, pp. 52-58, March, 1996.
    [18] L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-Beam Electro-Thermal Actuators for High Force Applications,” IEEE Conf. On Micro Electro Mechanical System, Orlando, FL, pp. 31-36, 1999
    [19] J. Park, L.Chu, E. Siwapornsathain, A. Oliver, and Y. Gianchandani, “Long Throw and Rotary Output Electrothermal Actuators Based on Bent-Beam Suspensions, ” IEEE Conf. On Micro Electro Mechanical System, Japan, pp.680-685, 2000.
    [20] M. J. Sinclair, “A High Force Low Area MEMS Thermal Actuator,” IEEE Inter Society Conference on Thermal Phenomena, pp. 127-132, 2000.
    [21] P. Lerch, C. K. Slimane, B. Romanowicz, and P. Renaud, “Modelization and Characterization of Asymmetrical Thermal Microactuators, ” Journal of Micromechanics and Microengineering, Vol. 6, pp. 134-137, 1996.
    [22] L. Lin, and M. Chiao, “Electrothermal Responses of Lineshape Microstructures, ” Sensors and Actuators A Vol. 55, pp.35-41, 1996.
    [23] M. Huja, and M. Husak, “Thermal Microactuators for Optical Purpose, ” IEEE International Conference on Coding and Computing, pp. 137-142, 2001, Las Vegas, NV, USA.
    [24] C. T. Peng, and K. N. Chiang, “Overview of Multilayered Thin Film Theories for MEMS and Electronic Packaging Applications, ” IEEE Inter Society Conference on Thermal Phenomena, pp. 1058-1065, 2002, San Diego, USA.
    [25] K. M. Chen, K. H. Horng, and K. N. Chiang, “Coplanarity Analysis and Validation of PBGA and T2-BGA Packages, ” Finite Elements in Analysis and Design, Vol. 38, pp.1165-1178, 2002.
    [26] Q. A. Huang, and N. K. S. Lee, “Analysis and Design of Polysilicon Thermal Flexure Actuator,” Journal of Micromechanics and Microengineering, Vol. 9, pp.64-70, 1999.
    [27] ANSYS Menu, “Thermal-Electric Element” Ch11. Table of Contents Theory Reference 5.5 1998
    [28] A. F. Mills, “Heat Transfer,” Second Edition, Prentice Hall, U.S.A., 1999.
    [29] A. Bejan, “Convection Heat Transfer,” Second Edition, John Wiley & Sons, Inc. 1995.
    [30] M. M. Yovanovich, “On The Effect of Shape, Aspect Ratio and Orientation upon Natural Convection from Isothermal Bodies of Complex Shape,” The Winter Annual Meeting of The ASME, HTD-Vol. 82, pp. 121-129, 1987 ,Boston, Massachusetts.
    [31] H. Kapels, R. Aigner, and J. Binder, “Fracture Strength and Fatigue of Polysilicon Determined by a Novel Thermal Actuator,” IEEE Transactions on Electron Devices, vol. 47, No. 7, pp.1522-1528, 2000.
    [32] I. S. Sokolnikoff, “Mathematical Theory of Elasticity,” Second Edition, Mcfraw-Hill, New York, 1956.
    [33] F. P. Incropera, and D. P. Dewitt, “Fundamentals of Heat and Mass Transfer,” Fourth Edition, John Wiley & Sons, Inc., New York, 1996.
    [34] W. B. Bickford, “Advanced Mechanics of Materials,” Addison Wesley, 1998.
    [35] G. K. Fedder, and R.T. Howe, “Thermal assembly of polysilicon microstructures, “ IEEE Micro Electro Mechanical Systems, pp. 63-68, 1991.
    [36] C. H. Pan, and S. Y. Tyan, “An electro-thermally driven microactuator with bilateral motion in plane and out-of-plane,” IEEE International Symposium on Micromechatronics and Human Science, pp. 135-142, 2001.
    [37] N. D. Mankame, and G. K. Ananthasuresh, “Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 452-462, 2001.
    [38] R. L. Boylestad, and L. Nashelsky, “Electronics: a survey of electrical engineering principles,” Fourth Edition, Prentice Hall, New Jersey, 1996.
    [39] M. Shikida, K. Kawasaki, and K. Sato, “Forming a rounded etched profile by using two-step anisotropic wet etching,” IEEE International symposium on micromechatronics and human science, pp. 95-100, 2000.
    [40] L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-Beam Electrothermal Actuators-Part I: Single Beam and Cascaded Devices,” Journal of Microelectromechanical Systems, Vol. 10, No. 2, pp. 247-254, June, 2001.
    [41] N. D. Mankame and G. K. Ananthasuresh, “Comprehensive Thermal Modelling and Characterization of An Electro-thermal-compliant Microactuator,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 452-462, 2001.
    [42] ANSYS Menu, “Analysis Procedures” Ch7. Table of Contents Theory Reference 5.5 1998
    [43] P. Obreja, R. Muller, and M. Ghita, “Silicon Membranes Manufactured by Electrochemical Etch Stop Technique,” International Semiconductor Conference, CAS '99 Proceedings, Vol. 2, pp. 531-534, Sinaia, Romania.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE