簡易檢索 / 詳目顯示

研究生: 吳明修
Wu, Ming-Hsiu
論文名稱: 利用可適性物件追蹤增進影片中行人偵測效率
Efficient Pedestrian Detection Using Adaptive Object Tracking
指導教授: 林嘉文
Lin, Chia-Wen
口試委員: 孫明廷
葉家宏
林嘉文
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 36
中文關鍵詞: 行人偵測物件追蹤關鍵畫面
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於各種安全系統的需求,使得行人偵測(pedestrian detection)技術發展得相當成熟。但是一般的做法都只考慮在單張靜態影像的效能,而忽略了視訊中前一個畫面(frame)可能帶給我們的訊息,使得實際應用上變得沒有效率。本篇論文的目的是要利用關鍵畫面(key-frame)的概念,把物件追蹤(object tracking)的方法結合到影片的行人偵測上。我們將在關鍵畫面偵測得到的行人位置、大小記錄下來,在關鍵畫面間距(interval)時利用這些資訊去做物件追蹤,使得可以快速找到行人的位置、大小等訊息,避免重複搜索時間軸上相鄰的畫面而造成不必要的運算。本文討論的架構大概分成三種,第一種是在單張的關鍵畫面上先偵測行人,然後在後幾張用這些結果作追蹤。第二種是雙向追蹤法,在關鍵畫面做行人偵測後,利用這些結果往前與往後作追蹤,再結合兩個方向的追蹤結果。第三種是可適性的切換模式,先藉由偵測的結果做觀察,等到符合我們設定的條件的時間點,再切換過去追蹤模式。物件追蹤的方法則採用基於梯度與色彩特徵的粒子濾波器(particle filter),為了可以簡單且快速的找到相同的物體。在我們的實驗結果顯示,雖然這樣的作法造成偵測率(detection rate)些微下降,但是同時會有一定的效率提升。而且現在針對不同物體都適用的偵測方法的研究也越來越多,未來應用到多重物體的系統上,可能會使得效率的改善上更加明顯。


    摘 要 i Abstract ii Content iii Chapter 1 Introduction 1 Chapter 2 Related Work 3 Chapter 3 Proposed Method 6 3.1 Deformable Part Model 6 3.1.1 Features 7 3.1.2 Star Structure Model 8 3.2 Particle Filter Object Tracker 10 3.2.1 Bayesian Filtering Assumption 11 3.2.2 Observation Model 12 3.3 Mode Switching Schemes 13 3.3.1 Key Frames Scheme 13 3.3.2 Bilateral Key Frame Scheme 14 3.3.3 Adaptive Switching Scheme 15 Chapter 4 Experiments and Discussion 18 4.1 Experiment Setting 18 4.2 Evaluation Criterion 18 4.3 Effect of Interval Length 19 4.4 Overall Performance 24 4.5 Computation Time Comparison 26 4.6 Examples of Detection Results 28 Chapter 5 Conclusion and Future Work 34 References 35

    [1] N. Dalal and B. Triggs, ” Histograms of Oriented Gradients for Human Detection,” in IEEE Conference on Computer Vision and Pattern Recognition , San Diego, USA, pages 886 - 893, June 2005.
    [2] P. Felzenszwalb, R. Girshick, D. McAllester, “Cascade Object Detection with Deformable Part Models,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010.
    [3] P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, “Object Detection with Discriminatively Trained Part Based Models,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 9, September 2010.
    [4] P. Felzenszwalb, D. McAllester, D. Ramanan, “A Discriminatively Trained, Multiscale, Deformable Part Model,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.
    [5] Q. Zhu, S. Avidan, M. Ye and K.-T. Cheng, “Fast Human Detection Using a Cascade of Histograms of Oriented Gradients,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
    [6] Y.-T. Chen, C.-S. Chen, Y.-P. Hung, and K.-Y. Chang, “Multi-Class Multi-Instance Boosting for Part-Based Human Detection,” in 9th IEEE International Workshop on Visual Surveillance, VS 2009, October 2009.
    [7] Y.-T. Chen and C.-S. Chen, “Fast Human Detection Using A Novel Boosted Cascading Structure with Meta Stages,” in IEEE Transactions on Image Processing, volume 17, number 8, pages 1452-1464, August 2008.
    [8] H. Ling and K. Okada, “Diffusion Distance for Histogram Comparison ,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
    [9] P. Pérez, C. Hue, J. Vermaak and M. Gangnet, “Color-Based Probabilistic Tracking,” in ECCV, pp. 661–675, Vol. 1, 2002.
    [10] B.Babenko, M.-H. Yang and S. Belongie, “Visual Tracking with Online Multiple Instance Learning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
    [11] J. Kwon and K. -M. Lee, “Visual Tracking Decomposition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2010.
    [12] S. Walk, N. Majer, K. Schindler and B. Schiele, “New Features and Insights for Pedestrian Detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 06/2010, San Francisco, (2010).
    [13] C. Wojek, S. Walk and B. Schiele, ”Multi-Cue Onboard Pedestrian Detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2009.
    [14] M. Andriluka, S. Roth and B. Schiele, “People-Tracking-by-Detection and People-Detection-by-Tracking,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR'08), (2008).
    [15] Xiaoyu Wang, Tony X. Han and Shuicheng Yan, “An HOG-LBP Human Detector with Partial Occlusion Handling,” IEEE International Conference on Computer Vision (ICCV 2009), Kyoto, 2009.
    [16] M. Enzweiler, A. Eigenstetter, B. Schiele and D. M. Gavrila, “Multi-Cue Pedestrian Classification with Partial Occlusion Handling,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, USA, 2010.
    [17] L. Zhu, Y. Chen, A. Yuille and W. Freeman, ”Latent Hierarchical Structural Learning for Object Detection,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2010.
    [18] P. Ott and M. Everingham, “Implicit color segmentation features for pedestrian and object detection,” In Proceedings of the IEEE International Conference on Computer Vision (ICCV2009), October 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE