簡易檢索 / 詳目顯示

研究生: 陳彥佑
Chen, Yen-Yu
論文名稱: Timing Characterization Methodology for Low-Power Single-Port SRAM Compiler
對低功率單埠靜態隨機存取記憶體產生器之時序特性方法
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 48
中文關鍵詞: 靜態隨機存取記憶體產生器時序特性方法
外文關鍵詞: SRAM Compiler, Timing Characterization Methodology
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Memory usually has been used in the ASIC design. The performance of memory always play role in the overall circuit. In this thesis, we propose an efficient extrapolation-based timing equation method for SRAM complier that generates SRAM macros. Our proposed method only needs to simulate a small number of memory configurations with relatively small sizes. The obtained results are then extrapolated to any other configurations. In order to obtain the SRAM macros, we develop the SRAM compiler. We also discuss the implementation of SRAM compiler in this thesis.


    在專用積體電路中,記憶體廣泛的被使用。記憶體的效能經常在電路裡扮演相當重要角色。在這篇論文當中,針對靜態隨機存取記憶體產生器所產生的靜態隨機存取記憶體提出了一個快速的具有外插能力的存取時間和週期時間方程式模型的方法。我們的方法只需要針對少量的小型記憶體做時序的模擬。經由這些小型記憶體的資料,使用外插方法推得其它不同架構的記憶體。為了取得靜態隨機存取記憶體,我們發展自己的靜態隨機存取記憶體產生器,在論文中,我們也會談論如何實現靜態隨機存取記憶體產生器。
    本文內容概述如下:
    在第一章中,說明研究動機及目的,並針對提出的時間方程式方法做簡扼說明以及描述其優點。
    在第二章中,將介紹相關靜態隨機存取記憶體的常見的內部電路架構,並比較其優缺點,說明為何挑選使用於靜態隨機存取記憶體產生器電路架構中。
    在第三章中,會談到如何實現靜態隨機存取記憶體產生器,針對內部重要觀念及細節做說明。
    在第四章中,提出時間方程式的發想,推導及描述提出的時間方程式方法以及完整的流程。
    在第五章中,針對提出的時間方程式設計實驗驗證,展示我們的實驗結果,跟傳統方法做比較。
    在第六章中,針對本文下了最後結論。

    Abstract (English) I Abstract (Chinese) II Acknowledgement (Chinese) III Content IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2 CMOS SRAM Circuitry 4 2.1 Theoretical Background of SRAM Circuitry 4 2.2 SRAM Bit Cell 6 2.3 Row Decoder 9 2.4 Column Decoder Circuitry 14 2.4.1 Predecoder with Pass Transistor 14 2.4.2 Tree Decoder Column Multiplexer 15 2.5 Write Circuitry and Precharge Circuitry 16 2.5.1 Write Circuitry 16 2.5.2 Precharge Circuitry 17 2.6 Sense Amplifier 19 2.6.1 Latch-type Sense Amplifier 19 2.6.2 Current-mirror Sense Amplifier 20 2.6.3 Automatic-power-down Sense Amplifier 20 2.7 Timing Controller 22 2.7.1 Delay-Chain and Replica Based SRAM 22 2.7.2 APD Based SRAM 23 Chapter 3 Implementation of SRAM Compiler 24 3.1 Background 24 3.2 Overall Flow of SRAM Compiler 27 3.2.1 Generation of Layout 28 3.2.2 Generation of SPICE Netlist 30 3.3 Critical Path Circuitry of SRAM 31 Chapter 4 Timing Characterization 32 4.1 Explanations 32 4.2 Timing Characterization Methodology 35 4.3 Overall Flow 36 Chapter 5 Experimental Results 37 5.1 Critical Path Circuit vs. Whole Circuit 37 5.2 Predicting Value vs. Actual Value 40 5.3 Comparison and Summary 43 Chapter 6 Conclusions 44 Bibliography 45

    [1] K. Anami, M. Yoshimoto, H. Shinohara, Y. Hirata, and T. Nakano, "Design consideration of a static memory cell", IEEE J. Solid-State Circuits, vol. 18, no. 4, pp. 414–418, Aug. 1983.
    [2] E. Seevinck, F. J. List, and J. Lohstroh, "Static-noise margin analysis of MOS SRAM cells", IEEE J. Solid-State Circuits, vol. 22, no. 5, pp. 748–754, Oct. 1987.
    [3] C. Lage, J. D. Hayden, and C. Subramanian, "Advanced SRAM technology - the race between 4T and 6T cells", IEEE International Electron Devices Meeting, pp. 271–274, Dec. 1996.
    [4] H. Kato, M. Matsui, K. Sato, H. Shibata, K. Hashimoto, T. Ootani, and K. Ochii, "SRAM cell stability under the influence of parasitic resistances and data holding voltage as a stability prober", IEEE J. Solid-State Circuits, vol. 32, no. 2, pp. 232–237, Feb. 1997.
    [5] M. Ishida, T. Kawakami, A. Tsuji, N. Kawamoto, M. Motoyoshi and N. Ouchi, "A novel 6T-SRAM cell technology designed with rectangular patterns scalable beyond 0.18 um generation and desirable for ultra high speed operation", IEEE International Electron Devices Meeting, pp. 202–204, Dec. 1998.
    [6] D-M Kwai, H-W Chang, H-J Liao, C-H Chiao, and Y-F Chou, "Detection of SRAM cell stability by lowering array supply voltage", Proceeding of Asian Test Symposium, pp. 268–273, Dec. 2000.
    [7] T. Kobayashi, K. Nogami, T. Shirotori, and Y. Fujimoto, "A current-controlled latch sense amplifier and a static power saving input buffer for low-power architecture", IEEE J. Solid State Circuits, vol. 28, no. 4, pp. 523–527, Apr. 1993.
    [8] B. S. Amrutur and M. A. Horowitz, "A replica technique for wordline and sense control in low-power SRAM’s", IEEE J. Solid-State Circuits, vol. 33, no. 8, pp. 1208–1219, Aug. 1998.
    [9] B. Wicht, T. Nirschl, and D. Schimitt-Landisedel, "Yield and speed optimization of a latch-type voltage sense amplifier", IEEE J. Solid-State Circuits, vol. 39, no. 7, Jul. 2004.
    [10] Y.-C. Lai and S.-Y. Huang, "A resilient and power-efficient automatic-power-down sense amplifier for SRAM Design", IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 55, no. 10, pp. 1031–1035, Oct. 2008.
    [11] Toan P. Le, Hai V. Phuong, and Pei Lin, "1 K×128 high-performance, low power configurable CMOS SRAM compiler", IEEE ASIC Seminar and Exhibit, Sep. 1990.
    [12] J. C. Tou, P. Gee, J. Duh, and R. Eesley, "A submicrometer CMOS embedded SRAM compiler", IEEE J. Solid-State Circuits, vol. 27, no. 3, pp. 417–424, Mar. 1992.
    [13] T. Tsang and R. Thukral, "An area-efficient 0.25 μm memory compiler designed for 780 MHz operations", IEEE Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 533–537, May 1999.
    [14] M. Jagasivamani and D. S. Ha, "Development of a low-power SRAM compiler", IEEE International Symposium on Circuits and Systems, vol. 4, pp. 498–501, May 2001.
    [15] Z. Wu, Z. Gao, and X. He, "A high performance embedded SRAM compiler", International Conference on ASIC, vol. 1, pp. 470–473, Oct. 2003.
    [16] Z. Wu, Z. Gao, and X. He, "Development of a deep submicrometer embedded SRAM compiler", Proceeding of IEEE International Conference on Electronics, Circuits and Systems, vol. 2, pp. 707–710, Dec. 2003.
    [17] B. G. Konoplev, E. A. Ryndin, and A. V. Kovalev, "An embedded static RAM generator based on a parameterized library", International Conference on ASIC vol. 1, pp. 486–489, Oct. 2003.
    [18] B. Bhaumik, P. Pradhan, G. S. Visweswaran, R. Varambally, and A. Hardi, "A low power 256 KB SRAM design", IEEE J. Solid-State Circuits, vol. 27, no. 8, pp. 1147–1156, Aug. 1992.
    [19] A. J. Bhavnagarwala, S. Kosonocky, and J. D. Meindlt, "Interconnect-centric array architectures for minimum SRAM access time", International Conference on Computer Design, pp. 400–405, Sep. 2001.
    [20] T. Wada, S. Rajan, and S. A. Przybylski, "An analytical access time model for on-chip cache memories", IEEE J. Solid-State Circuits, vol. 27, no. 8, pp. 1147–1156, Aug. 1992.
    [21] S. J. E. Wilton and N. P. Jouppi, "An enhanced cache access and cycle time model", IEEE J. Solid-State Circuits, vol. 31, no. 5, pp. 477–488, May 1996.
    [22] K. Itoh, "VLSI Memory Chip Design", Springer Verlag, 2001.
    [23] N. H. E. Weste, D. Harris, "CMOS VLSI Design A Circuits and Systems Perspective Third Edition", Addison Wesley, 2004.
    [24] Detailed description of GDSII (Graphic Data System) format [online]. Available: http://boolean.klaasholwerda.nl/interface/bnf/gdsformat.html
    [25] Format exchange program release version 0.8 of Anuvad [online]. Available: http://www.softjin.com/html_new/home.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE