研究生: |
陳郁如 Chen, Yu-Ju. |
---|---|
論文名稱: |
高催化性銦鈀奈米粒子之合成與其應用於乙醇氧化反應之應用 Synthesis of Indium-Palladium nanoparticles with high electrocatalytic activity for ethanol oxidation reaction |
指導教授: |
段興宇
Tuan, Hsing-Yu |
口試委員: |
周更生
Chou, Kan-Sen 曾院介 Tseng, Yuan-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 一鍋合成法 、碳載觸媒 、乙醇氧化反應 |
外文關鍵詞: | One-pot synthesis, Carbon supported catalyst, Ethanol oxidation reaction (EOR) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於乙醇氧化反應(EOR)的緩慢動力學限制了它們在燃料電池的開發中的廣泛應用。在這個研究,我們設計了不同組成的均勻分散In-Pd奈米顆粒,這種奈米顆粒具有高催化活性,使用不同前驅物及界面活性劑製備。為了證明In-Pd奈米顆粒的性質,我們採用了以下幾種分析,如穿透式電子顯微鏡 (Transmission electron microscope, TEM),X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS)和X射線繞射儀 (X-ray diffraction, XRD)。將奈米粒子負載在合適的碳黑上並在鹼性介質中進行乙醇氧化反應,並利用循環伏安法來測試觸媒表面的催化性質。並使用 密度泛函理論 (density functional theory, DFT)計算來演示銦如何促進乙醇氧化反映。 其中In3Pd2納米粒子(~3.7 nm)具有最高的催化性,具有顯著低含量的鈀,由於在銦上產生游離OH自由基,促進氧化物去除CO自由基並與相鄰鈀活性位點上的CH3CO基團結合形成醋酸根。
The slow kinetics of the ethanol oxidation reaction (EOR) plays a crucial role in the development of fuel cells, which limits their widespread use. Here, we design the different compositions of monodispersed In-Pd nanoparticles with high eletrocatalytic reactivity for EOR, which were prepared via one-pot approach, using metal precursors dissolved in surfactants mixtures. To demonstrate the nature characteristic of In-Pd nanoparticles, several analyses such as TEM, XPS and XRD were used. The nanoparticles were loaded on suitable carbon black and performed in alkaline media for electro-oxidation reaction. Cyclic voltammetry and oxidation of adsorbed CO were used to probe the surface conditions. We present a combined experimental and DFT calculation to demonstrate how incorporation of Indium can promote the activity of EOR. The In3Pd2 nanoparticles (~3.7 nm) is the most active catalyst with the significant low amount of Pd, resulting in promoting the oxidative removal of CO radicals and combination with CH3CO radicals on adjacent Pd active sites due to the generation of free OH radicals on indium sites.
REFERENCE
1. Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Román-Leshkov, Y., Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352 (6288), 974-978.
2. Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C.; DiSalvo, F. J.; Abruna, H. D., Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. Journal of the American Chemical Society 2004, 126 (12), 4043-4049.
3. Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H., Single‐Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. Angewandte Chemie International Edition 2016, 55 (6), 2058-2062.
4. Huang, W.; Wang, H.; Zhou, J.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F.; Zeng, M., Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature communications 2015, 6, 10035.
5. Yu, N. F.; Tian, N.; Zhou, Z. Y.; Huang, L.; Xiao, J.; Wen, Y. H.; Sun, S. G., Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity. Angewandte Chemie International Edition 2014, 53 (20), 5097-5101.
6. Du, W.; Mackenzie, K. E.; Milano, D. F.; Deskins, N. A.; Su, D.; Teng, X., Palladium–tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium. Acs Catalysis 2012, 2 (2), 287-297.
7. Bianchini, C.; Shen, P. K., Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chemical Reviews 2009, 109 (9), 4183-4206.
8. Chang, S. C.; Leung, L. W. H.; Weaver, M. J., Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. Journal of Physical Chemistry 1990, 94 (15), 6013-6021.
9. Xia, X.; Liess, H.-D.; Iwasita, T., Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. Journal of Electroanalytical Chemistry 1997, 437 (1-2), 233-240.
10. Wang, Y.; Zou, S.; Cai, W.-B., Recent advances on electro-oxidation of ethanol on Pt-and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5 (3), 1507-1534.
11. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental 2005, 56 (1-2), 9-35.
12. Hu, G.; Nitze, F.; Gracia-Espino, E.; Ma, J.; Barzegar, H. R.; Sharifi, T.; Jia, X.; Shchukarev, A.; Lu, L.; Ma, C., Small palladium islands embedded in palladium–tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction. Nature communications 2014, 5, 5253.
13. Fan, Z.; Huang, X.; Tan, C.; Zhang, H., Thin metal nanostructures: synthesis, properties and applications. Chemical science 2015, 6 (1), 95-111.
14. Chen, A.; Ostrom, C., Palladium-based nanomaterials: synthesis and electrochemical applications. Chemical reviews 2015, 115 (21), 11999-12044.
15. Yin, Z.; Zhang, Y.; Chen, K.; Li, J.; Li, W.; Tang, P.; Zhao, H.; Zhu, Q.; Bao, X.; Ma, D., Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation. Scientific reports 2014, 4, 4288.
16. Wang, C.; Chen, D. P.; Sang, X.; Unocic, R. R.; Skrabalak, S. E., Size-Dependent Disorder–Order Transformation in the Synthesis of Monodisperse Intermetallic PdCu Nanocatalysts. ACS nano 2016, 10 (6), 6345-6353.
17. Yin, Z.; Chi, M.; Zhu, Q.; Ma, D.; Sun, J.; Bao, X., Supported bimetallic PdAu nanoparticles with superior electrocatalytic activity towards methanol oxidation. Journal of Materials Chemistry A 2013, 1 (32), 9157-9163.
18. Chen, L.; Lu, L.; Zhu, H.; Chen, Y.; Huang, Y.; Li, Y.; Wang, L., Improved ethanol electrooxidation performance by shortening Pd–Ni active site distance in Pd–Ni–P nanocatalysts. Nature communications 2017, 8, 14136.
19. Yan, Y.; Du, J. S.; Gilroy, K. D.; Yang, D.; Xia, Y.; Zhang, H., Intermetallic nanocrystals: Syntheses and catalytic applications. Advanced Materials 2017.
20. Cui, Z.; Chen, H.; Zhao, M.; DiSalvo, F. J., High-Performance Pd3Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction. Nano letters 2016, 16 (4), 2560-2566.
21. Jiang, K.; Wang, P.; Guo, S.; Zhang, X.; Shen, X.; Lu, G.; Su, D.; Huang, X., Ordered PdCu‐Based Nanoparticles as Bifunctional Oxygen‐Reduction and Ethanol‐Oxidation Electrocatalysts. Angewandte Chemie International Edition 2016, 55 (31), 9030-9035.
22. Zhang, Y.; Yi, Q.; Deng, Z.; Zhou, X.; Nie, H., Excellent Electroactivity of Ternary Pd–Ag–Sn Nanocatalysts for Ethanol Oxidation. Catalysis Letters 2018, 148 (4), 1190-1201.
23. Wang, Y.; Shi, F.-F.; Yang, Y.-Y.; Cai, W.-B., Carbon supported Pd–Ni–P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media. Journal of Power Sources 2013, 243, 369-373.
24. Obradović, M.; Stančić, Z.; Lačnjevac, U.; Radmilović, V.; Gavrilović-Wohlmuther, A.; Radmilović, V.; Gojković, S. L., Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. Applied Catalysis B: Environmental 2016, 189, 110-118.
25. Feng, Y.; Bin, D.; Yan, B.; Du, Y.; Majima, T.; Zhou, W., Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation. Journal of colloid and interface science 2017, 493, 190-197.
26. Nguyen, S. T.; Law, H. M.; Nguyen, H. T.; Kristian, N.; Wang, S.; Chan, S. H.; Wang, X., Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Applied Catalysis B: Environmental 2009, 91 (1-2), 507-515.
27. Kakaei, K.; Dorraji, M., One-pot synthesis of Palladium Silver nanoparticles decorated reduced graphene oxide and their application for ethanol oxidation in alkaline media. Electrochimica Acta 2014, 143, 207-215.
28. Sheng, T.; Lin, W.-F.; Hardacre, C.; Hu, P., Role of water and adsorbed hydroxyls on ethanol electrochemistry on Pd: new mechanism, active centers, and energetics for direct ethanol fuel cell running in alkaline medium. The Journal of Physical Chemistry C 2014, 118 (11), 5762-5772.
29. Segall, M.; Lindan, P. J.; Probert, M. a.; Pickard, C. J.; Hasnip, P. J.; Clark, S.; Payne, M., First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter 2002, 14 (11), 2717.
30. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I.; Refson, K.; Payne, M. C., First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials 2005, 220 (5/6), 567-570.
31. Sham, L.; Kohn, W., One-particle properties of an inhomogeneous interacting electron gas. Physical Review 1966, 145 (2), 561.
32. Kohn, W., W. Kohn and LJ Sham, Phys. Rev. 140, A1133 (1965). Phys. Rev. 1965, 140, A1133.
33. Kohn, W.; Sham, L., Quantum density oscillations in an inhomogeneous electron gas. Physical Review 1965, 137 (6A), A1697.
34. Seidl, A., A. Seidl, A. Görling, P. Vogl, JA Majewski, and M. Levy, Phys. Rev. B 53, 3764 (1996). Phys. Rev. B 1996, 53, 3764.
35. Segall, M.; Pickard, C.; Shah, R.; Payne, M., Population analysis in plane wave electronic structure calculations. Molecular Physics 1996, 89 (2), 571-577.
36. Segall, M.; Shah, R.; Pickard, C.; Payne, M., Population analysis of plane-wave electronic structure calculations of bulk materials. Physical Review B 1996, 54 (23), 16317.
37. Perdew, J. P.; Burke, K.; Wang, Y., Erratum: Generalized gradient approximation for the exchange-correlation hole of a many-electron system [Phys. Rev. B 54, 16 533 (1996)]. Physical Review B 1998, 57 (23), 14999.
38. Perdew, J. P., JP Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). Phys. Rev. Lett. 1996, 77, 3865.
39. Perdew, J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B 1986, 33 (12), 8822.
40. Pfrommer, B. G.; Côté, M.; Louie, S. G.; Cohen, M. L., Relaxation of crystals with the quasi-Newton method. Journal of Computational Physics 1997, 131 (1), 233-240.
41. Chastain, J.; King, R. C.; Moulder, J., Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota: 1992.
42. Du, N.; Zhang, H.; Chen, B.; Ma, X.; Liu, Z.; Wu, J.; Yang, D., Porous Indium Oxide Nanotubes: Layer‐by‐Layer Assembly on Carbon‐Nanotube Templates and Application for Room‐Temperature NH3 Gas Sensors. Advanced Materials 2007, 19 (12), 1641-1645.
43. Farias, M. J.; Herrero, E.; Feliu, J. M., Site selectivity for CO adsorption and stripping on stepped and kinked platinum surfaces in alkaline medium. The Journal of Physical Chemistry C 2013, 117 (6), 2903-2913.
44. Sugimoto, W.; Aoyama, K.; Kawaguchi, T.; Murakami, Y.; Takasu, Y., Kinetics of CH3OH oxidation on PtRu/C studied by impedance and CO stripping voltammetry. Journal of electroanalytical chemistry 2005, 576 (2), 215-221.
45. Du, W.; Wang, Q.; Saxner, D.; Deskins, N. A.; Su, D.; Krzanowski, J. E.; Frenkel, A. I.; Teng, X., Highly active Iridium/Iridium–Tin/Tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction. Journal of the American Chemical Society 2011, 133 (38), 15172-15183.
46. Wang, R.; Ma, Y.; Wang, H.; Key, J.; Ji, S., Gas–liquid interface-mediated room-temperature synthesis of “clean” PdNiP alloy nanoparticle networks with high catalytic activity for ethanol oxidation. Chemical Communications 2014, 50 (85), 12877-12879.
47. Pozio, A. d.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L., Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of power sources 2002, 105 (1), 13-19.