簡易檢索 / 詳目顯示

研究生: 簡士堯
Chien, Shih-Yao
論文名稱: 以噴印法製備可撓式碲化鉍系厚膜熱電發電器
Flexible Bi-Te based thick-film thermoelectric generators fabricated by dispenser printing method
指導教授: 廖建能
Liao, Chien-Neng
口試委員: 李嘉甄
Li, Chia-Chen
朱旭山
Chu, Hsu-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 95
中文關鍵詞: 熱電材料噴印厚膜可撓式能源採集
外文關鍵詞: Thermoelectric material, Dispenser printing, Thick film, Flexible, Energy harvesting
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電發電器(TEG)是一種可以將熱能直接轉化為電能的裝置,常被應用於廢熱回收的領域上,近年來,利用印刷技術製作的厚膜型熱電發電器具有微型化、低成本且可大量製造的優點,因而被廣泛的研究,本研究著重於利用噴印的方式來製作後模型熱電發電器。首先,我們將熔煉後的P型及N型晶棒以手磨及球磨的方式研磨成細小的粉末,並加入有機溶劑及黏結劑,混合形成可以進行噴印的熱電漿料,再來,我們會將漿料噴印在可撓式的聚醯亞胺基板上,並進行後續的熱壓燒結。在熱壓燒結的部分,我們會分別探討燒結溫度及燒結壓力對於厚膜熱電性質的影響,在進行了最佳化的製程後,我們發現P型及N型厚膜之功率因子分別可達到23.2 及19.1 μW/cmK2。在模組的製備方面,我們將8對熱電接腳噴印在基板,並進行分析。此模組能在溫度差為33 K的條件下產生68 μW的輸出,我們也進行了模組的可靠度測試並將結果與近期的文獻進行比較。最後,我們將7個熱電模組並聯成一模組化熱電發電器,量測分析其輸出效能並探討其可行的應用。


    Thermoelectric generation devices are able to convert waste heat into electricity directly. Recently, thick-film thermoelectric devices based on printing technology have been actively researched for their virtues of miniaturization, low cost and mass production. Our work focuses on the fabrication and characterization of thick-film thermoelectric modules prepared by the dispenser printing method. Firstly, the zone-melted p-type Bi0.45Sb1.55Te3Se0.034 and n-type Bi2Te2.7Se0.3 ingots were hand crushed and further refined by planetary ball milling. Afterwards, the fine particles were mixed with the organic solvent and binders to form printable paste. Both p-type and n-type stripes were coated on a polyimide substrate by dispenser printing. Consequently, a hot-press sintering treatment was performed to improve the electrical conductivity of the printed thermoelements. The effects of pressing temperature and pressure on the transport properties of the printed thermoelements are investigated. Our results show that the thermoelectric power factor of p-type and n-type thermoelements can reach 23.2 and 19.1 μW/cmK2, respectively. Moreover, a flexible thermoelectric generator (TEG) composed of 8 pairs of p-n thermoelements was fabricated, which can deliver 68 μW under a temperature difference of 33 K. The performance and stability of the flexible thermoelectric module are also evaluated. Lastly, we produce a modular TEG by integrating 7 thermoelectric modules, measure its output performance and explore its potential applications.

    Abstract I 摘要 II 致謝 III Content IV List of Figures VI List of Tables XII Chapter 1 Introduction 1 1.1 Background 2 1.2 Motivation 7 Chapter 2 Literature review 8 2.1 Thermoelectric thick-film materials 8 2.1.1 Organic thermoelectric thick-film materials 8 2.1.2 Inorganic thermoelectric thick-film materials 10 2.1.3 Hybrid thermoelectric thick-film materials 13 2.2 Fabrication techniques of thermoelectric thick films 17 2.2.1 Screen printing 17 2.2.2 Dispenser printing 19 2.2.3 Inkjet printing 21 2.2.4 Sintering process of thermoelectric thick films 23 2.3 Fabrication and characterization of thermoelectric thick-film devices 27 2.3.1 Advantages of thermoelectric thick-film modules 27 2.3.2 Design considerations of thermoelectric thick-film devices 30 2.3.3 Applications of the thick-film thermoelectric devices 35 Chapter 3 Experimental Procedure 40 3.1 Fabrication of thermoelectric thick films 40 3.2 Hot-pressing process optimization 42 3.2.1 Experimental setting for the hot-pressing process 42 3.2.2 Property measurements of thermoelectric thick films 44 3.3 TEG module fabrication and analysis 48 3.3.1 TEG module design optimization 48 3.3.2 TEG module fabrication 50 3.3.3 TEG module analysis 51 Chapter 4 Results and Discussion 53 4.1 Development of the dispenser printing ink 53 4.1.1 Optimization of the printing ink composition 53 4.1.2 Optimization of the powder volume fraction in the printing ink 55 4.1.3 Dispersion of the printing ink 58 4.2 Sintering optimization of printed TE thick films 60 4.2.1 Sintering pressure effect 60 4.2.2 Sintering temperature effect 62 4.3 Design and analysis of printed TE module 69 4.3.1 Thermoelement length optimization 69 4.3.2 Module output performance 72 4.3.3 Device flexibility 77 4.3.4 Module performance comparison 79 4.3.5 Application demonstration 81 Chapter 5 Conclusions 88 References 90

    [1] IOT ANALYTICS (2020, November 19) State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT for the first time.
    Retrieved January 15, 2021, from
    https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
    [2] D. Enescu, Green Energy Advances, IntechOpen, 2019, 10-12.
    [3] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials. Materials for Sustainable Energy 7, 101-110 (2011).
    [4] N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Reports 6, 264-287 (2019).
    [5] J. He, T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward. Science 357, 6358 (2017).
    [6] E. W. Zaia, M. P. Gordon, P. Yuan, J. J. Urban, Progress and Perspective: Soft Thermoelectric Materials for Wearable and Internet-of-Things Applications. Advanced Electronic Materials 5, 1800823 (2019).
    [7] N. Wen, Z. Fan, S. Yang, Y. Zhao, T. Cong, S. Xu, H. Zhang, J. Wang, H. Huang, C. Li, Highly conductive, ultra-flexible and continuously processable PEDOT: PSS fibers with high thermoelectric properties for wearable energy harvesting. Nano Energy 78, 105361 (2020).
    [8] J. T. Quinn, J. Zhu, X. Li, J. Wang, Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors. Journal of Materials Chemistry C 5, 8654-8681 (2017).
    [9] Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu, D. Zhu, Organic Thermoelectric Materials and Devices Based on p-and n-Type Poly (metal 1, 1, 2, 2-ethenetetrathiolate) s. Advanced Materials 24, 932-937 (2012).
    [10] X. Wang, H. Wang, B. Liu, Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 10, 1196 (2018).
    [11] C. K. Mytafides, L. Tzounis, G. Karalis, P. Formanek, A. S. Paipetis, High-Power All-Carbon Fully Printed and Wearable SWCNT-Based Organic Thermoelectric Generator. ACS Applied Materials & Interfaces 13, 11151–11165 (2021).
    [12] W. Zhou, Q. Fan, Q. Zhang, L. Cai, K. Li, X. Gu, F. Yang, N. Zhang, Y. Wang, H. Liu, High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nature Communications 8, 1-9 (2017).
    [13] M. N. Hasan, H. Wahid, N. Nayan, M. S. Mohamed Ali, Inorganic thermoelectric materials: A review. International Journal of Energy Research 44, 6170-6222 (2020).
    [14] J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, New and old concepts in thermoelectric materials. Angewandte Chemie International Edition 48, 8616-8639 (2009).
    [15] Q. Zhang, T. Fang, F. Liu, A. Li, Y. Wu, T. Zhu, X. Zhao, Tuning Optimum Temperature Range of Bi2Te3-Based Thermoelectric Materials by Defect Engineering. Chemistry–An Asian Journal 15, 2775-2792 (2020).
    [16] J. Pei, B. Cai, H.-L. Zhuang, J.-F. Li, Bi2Te3-based applied thermoelectric materials: research advances and new challenges. National Science Review 7, 1856-1858 (2020).
    [17] 張品萱,可撓式碲化鉍系熱電厚膜模組製備研究,國立清華大學 (2019).
    [18] T. Varghese, C. Dun, N. Kempf, M. Saeidi-Javash, C. Karthik, J. Richardson, C. Hollar, D. Estrada, Y. Zhang, Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering. Advanced Functional Materials 30, 1905796 (2020).
    [19] S. J. Kim, H. Choi, Y. Kim, J. H. We, J. S. Shin, H. E. Lee, M.-W. Oh, K. J. Lee, B. J. Cho, Post ionized defect engineering of the screen-printed Bi2Te2.7Se0.3 thick film for high performance flexible thermoelectric generator. Nano Energy 31, 258-263 (2017).
    [20] B. Iezzi, K. Ankireddy, J. Twiddy, M. D. Losego, J. S. Jur, Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors. Applied Energy 208, 758-765 (2017).
    [21] M. M. Mallick, A. G. Rösch, L. Franke, S. Ahmed, A. Gall, H. Geßwein, J. Aghassi, U. Lemmer, High-Performance Ag–Se-Based n-Type Printed Thermoelectric Materials for High Power Density Folded Generators. ACS Applied Materials & Interfaces 12, 19655-19663 (2020).
    [22] A. Tsuruta, M. Tanaka, M. Mikami, Y. Kinemuchi, Y. Masuda, W. Shin, I. Terasaki, Development of Na0.5CoO2 Thick Film Prepared by Screen-Printing Process. Materials 13, 2805 (2020).
    [23] D. Liu, P. Shi, W. Ren, Y. Liu, M. Liu, Y. Zhang, Q. Lin, B. Tian, Z. Jiang, Z.-G. Ye, Investigation on thermoelectric properties of screen-printed La1-xSrxCrO3-In2O3 thermocouples for high temperature sensing. Journal of the European Ceramic Society 38, 5030-5035 (2018).
    [24] B. Zhang, J. Sun, H. Katz, F. Fang, R. Opila, Promising thermoelectric properties of commercial PEDOT: PSS materials and their Bi2Te3 powder composites. ACS Applied Materials & Interfaces 2, 3170-3178 (2010).
    [25] A. L. Pires, I. s. F. Cruz, J. Silva, G. a. N. Oliveira, S. Ferreira-Teixeira, A. M. Lopes, J. o. P. Araújo, J. Fonseca, C. Pereira, A. M. Pereira, Printed flexible μ-thermoelectric device based on hybrid Bi2Te3/PVA composites. ACS Applied Materials & Interfaces 11, 8969-8981 (2019).
    [26] S.-h. Jung, K. T. Kim, G.-S. Lee, J.-Y. Sun, D. W. Kim, Y. S. Eom, D. Y. Yang, J. Yu, J. M. Park, D. Y. Hyeon, Synergistically Improved Thermoelectric Energy Harvesting of Edge-Oxidized-Graphene-Bridged N-type Bismuth Telluride Thick Films. ACS Applied Materials & Interfaces 13, 5125-5132 (2021).
    [27] C. Jiang, P. Wei, Y. Ding, K. Cai, L. Tong, Q. Gao, Y. Lu, W. Zhao, S. Chen, Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nano Energy 80, 105488 (2021).
    [28] J. Recatala-Gomez, A. Suwardi, I. Nandhakumar, A. Abutaha, K. Hippalgaonkar, Toward accelerated thermoelectric materials and process discovery. ACS Applied Energy Materials 3, 2240-2257 (2020).
    [29] S. Jo, S. Choo, F. Kim, S. H. Heo, J. S. Son, Ink processing for thermoelectric materials and power-generating devices. Advanced Materials 31, 1804930 (2019).
    [30] M. Orrill, S. LeBlanc, Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges. Journal of Applied Polymer Science 134, 44256 (2017).
    [31] W. Hou, X. Nie, W. Zhao, H. Zhou, X. Mu, W. Zhu, Q. Zhang, Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy 50, 766-776 (2018).
    [32] M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies. The International Journal of Advanced Manufacturing Technology 67, 1721-1754 (2013).
    [33] D. Madan, Z. Wang, P. K. Wright, J. W. Evans, Printed flexible thermoelectric generators for use on low levels of waste heat. Applied Energy 156, 587-592 (2015).
    [34] L. Lan, J. Zou, C. Jiang, B. Liu, L. Wang, J. Peng, Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes. Frontiers of Optoelectronics 10, 329-352 (2017).
    [35] W. Yu, H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications. Journal of Nanomaterials 2012, 435873 (2012).
    [36] B. Chen, M. Kruse, B. Xu, R. Tutika, W. Zheng, M. D. Bartlett, Y. Wu, J. C. Claussen, Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale 11, 5222-5230 (2019).
    [37] X. Liu, W.-y. Zhao, H.-y. Zhou, X. Mu, D.-q. He, W.-t. Zhu, P. Wei, H. Wu, Q.-j. Zhang, Fabrication and optimization of brush-printed n-type Bi2Te3 thick films for thermoelectric cooling devices. Journal of Electronic Materials 45, 1328-1335 (2016).
    [38] X. Mu, H. Zhou, D. He, W. Zhao, P. Wei, W. Zhu, X. Nie, H. Liu, Q. Zhang, Enhanced electrical properties of stoichiometric Bi0.5Sb1.5Te3 film with high-crystallinity via layer-by-layer in-situ Growth. Nano Energy 33, 55-64 (2017).
    [39] H. Choi, S. J. Kim, Y. Kim, J. H. We, M.-W. Oh, B. J. Cho, Enhanced thermoelectric properties of screen-printed Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 thick films using a post annealing process with mechanical pressure. Journal of Materials Chemistry C 5, 8559-8565 (2017).
    [40] C.-W. Chen, C.-N. Liao, Enhanced thermoelectric properties of screen-printed Bi–Sb–Te films on flexible substrate by electrical sintering process. Materials Chemistry and Physics 259, 124006 (2021).
    [41] F. Suarez, D. P. Parekh, C. Ladd, D. Vashaee, M. D. Dickey, M. C. Öztürk, Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Applied Energy 202, 736-745 (2017).
    [42] K. K. Jung, Y. Jung, C. J. Choi, J. M. Lee, J. S. Ko, Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate. Current Applied Physics 16, 1442-1448 (2016).
    [43] M. Thielen, L. Sigrist, M. Magno, C. Hierold, L. Benini, Human body heat for powering wearable devices: From thermal energy to application. Energy Conversion and Management 131, 44-54 (2017).
    [44] K. Liu, X. Tang, Y. Liu, Z. Xu, Z. Yuan, J. Li, Z. Zhang, Preparation and optimization of miniaturized radioisotope thermoelectric generator based on concentric filament architecture. Journal of Power Sources 407, 14-22 (2018).
    [45] Z. Yuan, X. Tang, Z. Xu, J. Li, W. Chen, K. Liu, Y. Liu, Z. Zhang, Screen-printed radial structure micro radioisotope thermoelectric generator. Applied Energy 225, 746-754 (2018).
    [46] S. H. Park, S. Jo, B. Kwon, F. Kim, H. W. Ban, J. E. Lee, D. H. Gu, S. H. Lee, Y. Hwang, J.-S. Kim, High-performance shape-engineerable thermoelectric painting. Nature Communications 7, 1-10 (2016).
    [47] W. Glatz, S. Muntwyler, C. Hierold, Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sensors and Actuators A: Physical 132, 337-345 (2006).
    [48] W. Glatz, E. Schwyter, L. Durrer, C. Hierold, Bi2Te3-Based Flexible Micro Thermoelectric Generator With Optimized Design. Journal of Microelectromechanical Systems 18, 763-772 (2009).
    [49] S. J. Kim, J. H. We, B. J. Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energy & Environmental Science 7, 1959-1965 (2014).
    [50] C. S. Kim, H. M. Yang, J. Lee, G. S. Lee, H. Choi, Y. J. Kim, S. H. Lim, S. H. Cho, B. J. Cho, Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Letters 3, 501-507 (2018).
    [51] J. Yuan, R. Zhu, A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator. Applied Energy 271, 115250 (2020).
    [52] Y. Wang, X. Guo, Y. Shi, D. Mei, Self-powered wearable ultraviolet index detector using a flexible thermoelectric generator. Journal of Micromechanics and Microengineering 29, 045002 (2019).
    [53] X. Zeng, C. Yan, L. Ren, T. Zhang, F. Zhou, X. Liang, N. Wang, R. Sun, J. B. Xu, C. P. Wong, Silver telluride nanowire assembly for high-performance flexible thermoelectric film and its application in self-powered temperature sensor. Advanced Electronic Materials 5, 1800612 (2019).
    [54] Y. J. Kim, H. M. Gu, C. S. Kim, H. Choi, G. Lee, S. Kim, K. Y. Kevin, S. G. Lee, B. J. Cho, High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator. Energy 162, 526-533 (2018).
    [55] Z. Wang, A. Chen, R. Winslow, D. Madan, R. Juang, M. Nill, J. Evans, P. Wright, Integration of dispenser-printed ultra-low-voltage thermoelectric and energy storage devices. Journal of Micromechanics and Microengineering 22, 094001 (2012).
    [56] C. C. Ho, J. W. Evans, P. K. Wright, Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte. Journal of Micromechanics and Microengineering 20, 104009 (2010).
    [57] M. Pospischil, M. Klawitter, M. Kuchler, J. Specht, H. Gentischer, R. Efinger, C. Kroner, M. Luegmair, M. König, M. Hörteis, Process development for a high-throughput fine line metallization approach based on dispensing technology. Energy Procedia 43, 111-116 (2013).
    [58] A. M’barki, L. Bocquet, A. Stevenson, Linking rheology and printability for dense and strong ceramics by direct ink writing. Scientific Reports 7, 1-10 (2017).
    [59] M. Loos, Carbon Nanotube Reinforced Composites: CNT Polymer Science and Technology, Elsevier, 2015, 161-165
    [60] E. Ruckenstein, On the stability of concentrates. Non-aqueous dispersions. Colloids and Surfaces 69, 271-275 (1993).
    [61] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634-638 (2008).
    [62] X. Wang, Y. Li, G. Liu, F. Shan, Achieving high power factor of p-type BiSbTe thermoelectric materials via adjusting hot-pressing temperature. Intermetallics 93, 338-342 (2018).
    [63] P.-S. Chang, C.-N. Liao, Screen-printed flexible thermoelectric generator with directional heat collection design. Journal of Alloys and Compounds 836, 155471 (2020).
    [64] Z. Yuan, X. Tang, Y. Liu, Z. Xu, K. Liu, Z. Zhang, W. Chen, J. Li, A stacked and miniaturized radioisotope thermoelectric generator by screen printing. Sensors and Actuators A: Physical 267, 496-504 (2017).
    [65] K. Kato, K. Kuriyama, T. Yabuki, K. Miyazaki, Organic-inorganic thermoelectric material for a printed generator. Journal of Physics: Conference Series 1052 , 012008 (2018).
    [66] J. Feng, W. Zhu, Z. Zhang, L. Cao, Y. Yu, Y. Deng, Enhanced Electrical Transport Properties via Defect Control for Screen-Printed Bi2Te3 Films over a Wide Temperature Range. ACS Applied Materials & Interfaces 12, 16630-16638 (2020).
    [67] B.-J. Kim, S.-Y. Jung, Y. Cho, O. Kraft, I.-S. Choi, Y.-C. Joo, Crack nucleation during mechanical fatigue in thin metal films on flexible substrates. Acta Materialia 61, 3473-3481 (2013).
    [68] D. Kong, W. Zhu, Z. Guo, Y. Deng, High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting. Energy 175, 292-299 (2019).
    [69] X. Sun, C. Wang, J. Zhang, G. Liu, G. Zhang, X. Ding, G. Zhang, J. Sun, Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. Journal of Physics D: Applied Physics 41, 195404 (2008).
    [70] 宋聖榮,臺灣地熱能源發展的現況、展望與困境,國立台灣大學地質科學系. Retrieved July 9, 2021, from
    http://163.32.57.16/earth/files/literature/15216.5352_3.00t0a0x0W0a00010o0e00P00D.pdf
    [71] A. Proto, M. Penhaker, S. Conforto, M. Schmid, Nanogenerators for human body energy harvesting. Trends in Biotechnology 35, 610-624 (2017).

    QR CODE