研究生: |
林睿哲 Ruei-Jer Lin |
---|---|
論文名稱: |
尖晶石CoFe2O4與鈣鈦礦Pb(Zr, Ti)O3積層複合薄膜的多重鐵性與磁電耦合特性研究 Multiferroic and Magnetoelectric Properties of Pb(Zr, Ti)O3/CoFe2O4 Multilayer Composite Thin Films |
指導教授: |
吳泰伯
Tai-Bor Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 磁電耦合 、鐵電 、磁致伸縮 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用雙槍磁控濺鍍系統,成功鍍出具有強烈諧合成長(coherent growth)的尖晶石與鈣鈦礦2-2型積層薄膜。
CoFe2O4(CFO)由於表面自由能的關係,容易在Si基板上出現(111)的指向。本實驗利用這個特性,以BaTiO3(BTO)作為起始層,藉由控制CFO與BTO的堆疊週期,可調變BTO與CFO積層薄膜結構的指向。在相同總厚度下,當堆疊週期越高,也就是子層厚度越低的時候,薄膜結構趨向(111)指向。這證明了這兩種材料之間可以克服晶格常數的差異,彼此互相增強結晶性。利用穿透電子顯微鏡,本實驗成功觀察到BTO/CFO之間的諧合成長機制。
除了BTO之外,具有強鐵電性的Pb(Zr0.5Ti0.5)O3(PZT)也與CFO整合在同一個結構中。PZT/CFO/PZT三層結構呈現非常整齊與規律的柱狀晶結構,且改變CFO的厚度並不會造成鐵電性的下降,這是因為CFO的阻值遠比PZT來得小的緣故。然而隨著CFO中間層的變薄,磁性卻下降得很快。這有可能因為PZT與CFO晶格常數差異帶來磁性的劣化。雖然如此,PZT/CFO/PZT仍然具有相當優異的抗漏電行為,以及良好的鐵電性與鐵磁性,是非常適合用來研究磁電耦合現象的結構。
過去,固定鐵電與鐵磁相比例下,學者盡可能的增加兩相的接觸面積,預期可以有較佳的磁電耦合現象。本實驗同樣利用2-2型PZT/CFO積層薄膜,在相同總膜厚下,改變堆疊週期,卻發現鐵電性與鐵磁性隨著堆疊週期的增加而下降。藉由掃描式穿透電子顯微鏡與X光能量色散光譜分析,本實驗發現PZT/CFO結構呈現大的角椎型柱狀晶結構,這樣的結構造成界面形貌的起伏非常大。除此之外,PZT/CFO晶格常數的差異也是可能造成鐵電性與鐵磁性下降的原因。尤有甚者,隨著堆疊週期增加而劣化的鐵電性與鐵磁性,也造成了磁電耦合係數的下降。
1 W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759-765 (2006).
2 J. Van Suchtelen, Philips Research Reports, 27, 28 (1972).
3 S. Dong, J. Zhai, J. Li, and D. Viehland, Applied Physics Letters 89, 252904 (2006).
4 V. M. Petrov, G. Srinivasan, M. I. Bichurin, and A. Gupta, Physical Review B 75, 224407 (2007).
5 D. Shuxiang, J. F. Li, D. Viehland, J. Cheng, and L. E. Cross, Applied Physics Letters 85, 3534 (2004).
6 M. Vopsaroiu, J. Blackburn, and M. G. Cain, Journal of Physics D, Applied Physics 40, 5027 (2007).
7 H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, and F. Bai, Science 303, 661 (2004).
8 H. M. Zheng, F. Straub, Q. Zhan, P. L. Yang, W. K. Hsieh, F. Zavaliche, Y. H. Chu, U. Dahmen, and R. Ramesh, Advanced Materials 18, 2747 (2006).
9 J. G. Wan, X. W. Wang, Y. J. Wu, M. Zeng, Y. Wang, H. Jiang, W. Q. Zhou, G. H. Wang, and J. M. Liu, Applied Physics Letters 86, 122501 (2005).
10 C. Y. Deng, Y. Zhang, J. Ma, Y. H. Lin, and C. W. Nan, Acta Materialia 56, 405 (2008).
11 G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, Physical Review B 64, 214408 (2001).
12 G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, Physical Review B 66, 134402 (2002).
13 V. K. Wadhawan, Introduction to Ferroic Materials (CRC Press, 2000).
14 D. N. Astrov, Sov. Phys. JETP 11, 708 (1960).
15 V. J. Folen, G. T. Rado, and E. W. Stalder, Physical Review Letters 6, 607 (1961).
16 N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
17 D. I. Khomskii, Arxiv preprint cond-mat/0601696 (2006).
18 G. A. Smolenski and I. E. Chupis, Physics-Uspekhi 25, 475 (1982).
19 F. Kubel and H. Schmid, Structural Science 46, 698 (1990).
20 Y. N. Venevtsev, V. V. Gagulin, and I. D. Zhitomirsky, Ferroelectrics 73, 221 (1987).
21 E. F. Bertaut, M. Mercier, and R. Pauthenet, Physics Letters 5, 27 (1963).
22 V. A. Bokov, G. A. Smolenskii, S. A. Kizhaev, and I. E. Mylnikova, Soviet Physics - Solid State 5, 3607 (1964).
23 J. Chappert, Physics Letters 18, 229 (1965).
24 H. Sugie, N. Iwata, and K. Kohn, Journal of the Physical Society of Japan 71, 1558 (2002).
25 E. Ascher, H. Schmid, and D. Tar, Solid State Communications 2, 45 (1964).
26 D. L. Fox and J. F. Scott, Journal of Physics C: Solid State Physics 10, L329 (1977).
27 E. T. Keve, S. C. Abrahams, and J. L. Bernstein, The Journal of Chemical Physics 51, 4928 (1969).
28 M. Eibschutz and H. J. Guggenheim, Solid Sate Communications 6, 737 (1968).
29 J. F. Ryan and J. F. Scott, Solid State Communications 14, 5 (1974).
30 N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, and Y. Horibe, Nature 436, 1136 (2005).
31 T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
32 N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature 429, 392-395 (2004).
33 H. Zheng, PhD thesis (Maryland University, 2004).
34 J. F. Scott, Journal of Physics: Condensed Matter 20, 021001 (2008).
35 I. Sosnowska, T. P. Neumaier, and E. Steichele, Journal of Physics C: Solid State Physics 15, 4835 (1982).
36 A. Run, D. R. Terrell, and J. H. Scholing, Journal of Materials Science 9, 1710-1714 (1974).
37 J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, Japanese Journal of Applied Physics, Part 1 40, 4948 (2001).
38 H. Schmid, Ferroelectrics 161, 1 (1994).
39 I. E. Dzyaloshinskii, Soviet Physics JETP 10, 628 (1960).
40 M. I. Bichurin, Ferroelectrics 204, 17 (1997).
41 E. Ascher, H. Rieder, H. Schmid, and H. Stossel, Journal of Applied Physics 37, 1404 (1966).
42 J. F. Scott, Physical Review B 16, 2329-2331 (1977).
43 D. L. Fox, D. R. Tilley, J. F. Scott, and H. J. Guggenheim, Physical Review B 21, 2926 (1980).
44 B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, Physical Review B 70, 212412 (2004).
45 M. Fiebig, T. Lottermoser, D. Froehlich, A. V. Goltsev, and R. V. Pisarev, Nature 419, 818 (2002).
46 W. F. Brown, R. M. Hornreich, and S. Shtrikman, Physical Review 168, 574 (1968).
47 J. Boomgaard and R. A. J. Born, Journal of Materials Science 13, 1538 (1978).
48 J. Boomgaard, D. R. Terrell, R. A. J. Born, and H. Giller, Journal of Materials Science 9, 1705 (1974).
49 J. V. D. Boomgaard, A. Van Run, and J. Van Suchtelen, Ferroelectrics 10, 295 (1976).
50 G. Harshe, J. P. Dougherty, and R. E. Newnham, International Journal of Applied Electromagnetics in Materials 4, 145 (1993).
51 S. Lopatin, I. Lopatina, and I. Lisnevskaya, Ferroelectrics 162, 63 (1994).
52 T. Lisnevskaya, M. D. Chkheidze, and B. I. Zvyagintsev, Inorganic Materials 31, 1139 (1995).
53 M. I. Bichurin, I. A. Kornev, V. M. Petrov, and I. V. Lisnevskaya, Ferroelectrics 204, 289 (1997).
54 C.-W. Nan, Physical Review B 50, 6082 (1994).
55 C. W. Nan and D. R. Clarke, Journal of the American Ceramic Society 80, 1333-1340 (1997).
56 M. Fiebig, Journal of Physics D: Applied Physics 38, R123-R152 (2005).
57 S. Dong, J. F. Li, and D. Viehland, Applied Physics Letters 85, 2307 (2004).
58 C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, Journal of Applied Physics 103, 031101 (2008).
59 G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, Physical Review B 65, 134402 (2002).
60 M. I. Bichurin, V. M. Petrov, and G. Srinivasan, Journal of Applied Physics 92, 7681 (2002).
61 M. I. Bichurin, V. M. Petrov, and G. Srinivasan, Physical Review B 68, 54402 (2003).
62 M. I. Bichurin, D. A. Filippov, V. M. Petrov, V. M. Laletsin, N. Paddubnaya, and G. Srinivasan, Physical Review B 68, 132408 (2003).
63 M. I. Bichurin, V. M. Petrov, Y. V. Kiliba, and G. Srinivasan, Physical Review B 66, 134404 (2002).
64 D. A. Filippov, M. I. Bichurin, V. M. Petrov, V. M. Laletin, N. N. Poddubnaya, and G. Srinivasan, Technical Physics Letters 30, 6 (2004).
65 M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford, 1977).
66 C. Kittel, Introduction to solid state physics (Wiley New York, 1996).
67 A. E. Clark, Ferromagnetic Materials (Amsterdam: North-Holland, 1980).
68 B. D. Cullity, Introduction to magnetic materials (Addison-Wesley, 1972).
69 A. Hanumaiah, T. Bhimasankaram, S. V. Suryanarayana, and G. S. Kumar, Bulletin of Materials Science 17, 405 (1994).
70 W. E. Kramer, R. H. Hopkins, and M. R. Daniel, Journal of Materials Science 12, 409 (1977).
71 V. M. Laletin, Soviet Technical Physics Letters 18, 484 (1992).
72 J. van den Boomgaard and R. A. J. Born, Journal of Materials Science 13, 1538 (1978).
73 K. K. Patankar, V. L. Mathe, A. N. Patil, S. A. Patil, S. D. Lotke, Y. D. Kolekar, and P. B. Joshi, Journal of Electroceramics 6, 115 (2001).
74 M. Avellaneda and G. Harshe, Journal of Intelligent Material Systems and Structures 5, 501 (1994).
75 C. W. Nan, G. Liu, and Y. Lin, Applied Physics Letters 83, 4366 (2003).
76 J. Ryu, S. Priya, K. Uchino, H. E. Kim, and D. Viehland, Journal of the Korean Ceramic Society 39, 813 (2002).
77 N. Cai, J. Zhai, C. W. Nan, Y. Lin, and Z. Shi, Physical Review B 68, 224103 (2003).
78 J. Padilla, Surface Science 418, 64 (1998).
79 J. Padilla and D. Vanderbilt, Physical Review B 56, 1625 (1997).
80 B. Meyer, J. Padilla, and D. Vanderbilt, Arxiv preprint cond-mat/9908363 (1999).
81 T. Sano, D. M. Saylor, and G. S. Rohrer, Journal of the American Ceramic Society 86, 1933 (2003).
82 M. Alfredsson, J. P. Brodholt, D. P. Dobson, A. R. Oganov, C. R. A. Catlow, S. C. Parker, and G. D. Price, Physics and Chemistry of Minerals 31, 671 (2005).
83 T. Sano, C. S. Kim, and G. S. Rohrer, Journal of the American Ceramic Society 88, 993 (2005).
84 R. K. Mishra and G. Thomas, Journal of Applied Physics 48, 4576 (1977).
85 R. L. Stewart and R. C. Bradt, J. Mater. Sci. 15, 67 (1980).
86 M. R. Huang, C. W. Lin, and H. Y. Lu, Applied Surface Science 177, 103 (2001).
87 U. Luders, F. Sanchez, and J. Fontcuberta, Physical Review B 70, 045403 (2004).
88 N. J. van der Laag, C. M. Fang, G. de With, G. A. de Wijs, H. H. Brongersma, Journal of the American Ceramic Society 88, 1544-1548 (2005).
89 楊長勝,程海峰,唐耿平,李效東,楚增勇與周永江,真空科學與技術學報 25, 372-377 (2005).
90 N. Ortega, A. Kumar, P. Bhattacharya, S. B. Majumder, and R. S. Katiyar, Physical Review B 77, 14111 (2008).
91 N. Wakiya, K. Shinozaki, and N. Mizutani, Applied Physics Letters 85, 1199 (2004).
92 H. S. Cho, M. H. Kim and H. J. Kim, Journal of Materials Research 9, 2425 (1994).
93 H. S. Cho and H. J. Kim, Journal of Applied Physics 78, 418 (1995).
94 I. A. Al-Omari and D. J. Sellmyer, Physical Review B 52, 3441 (1995).
95 D. Niebieskikwiat, L. E. Hueso, M. B. Salamon, and N. D. Mathur, Journal of Applied Physics 99, 08C903 (2006).
96 M. Izumi, Y. Ogimoto, Y. Okimoto, T. Manako, P. Ahmet, K. Nakajima, T. Chikyow, M. Kawasaki, and Y. Tokura, Physical Review B 64, 064429 (2001).
97 H. C. He, J. P. Zhou, J. Wang, and C. W. Nan, Applied Physics Letters 89, 052904 (2006).
98 X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, and S. Buddhudu, Advanced Functional Materials 14, 920 (2004).
99 M. S. Chen, J. M. Wu, and T. B. Wu, Japanese Journal of Applied Physics 34, 4870 (1995).
100 M. S. Chen, T. B. Wu, and J. M. Wu, Applied Physics Letters 68, 1430 (1996).
101 C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, J. M. Wu, and T. B. Wu, Applied Physics Letters 66, 2643 (1995).
102 J. Li, I. Levin, J. Slutsker, V. Provenzano, P. K. Schenck, R. Ramesh, J. Ouyang, and A. L. Roytburd, Applied Physics Letters 87, 072909 (2005).
103 J. H. Liao, T. B. Wu, S. T. Ho, Y. T. Chen, S. U. Jen, and Y. D. Yao, Journal of Physics D, Applied Physics 40, 4586 (2007).
104 S. Hope, J. Lee, P. Rosenbusch, G. Lauhoff, J. A. C. Bland, A. Ercole, D. Bucknall, J. Penfold, H. J. Lauter, and V. Lauter, Physical Review B 55, 11422 (1997).
105 J. Z. Sun, D. W. Abraham, R. A. Rao, and C. B. Eom, Applied Physics Letters 74, 3017 (1999).
106 M. I. Bichurin, V. M. Petrov, and G. Srinivasan, Physical Review B 68, 054402 (2003).
107 S. F. Liu, S. E. Park, T. R. Shrout, and L. E. Cross, Journal of Applied Physics 85, 2810 (1999).
108 S. Hope, J. Lee, P. Rosenbusch, G. Lauhoff, J. A. C. Bland, A. Ercole, D. Bucknall, J. Penfold, H. J. Lauter, V. Lauter, and R. Cubitt, Physical Review B 55, 11422 (1997).
109 A. R. Chaudhuri, R. Ranjith, S. B. Krupanidhi, R. V. K. Mangalam, and A. Sundaresan, Applied Physics Letters 90, 122902 (2007).
110 K. Abe, S. Komatsu, N. Yanase, K. Sano, and T. Kawakubo, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 36, 5846 (1997).
111 A. K. Tagantsev and G. Gerra, Journal of Applied Physics 100, 051607 (2006).
112 W. L. Winterbottom, Acta Metallurgica 15, 303 (1967).
113 Y. P. Zhao, G. Palasantzas, G. C. Wang, and J. T. M. De Hosson, Physical Review B 60, 1216 (1999).
114 Y. P. Zhao, G. C. Wang, T. M. Lu, G. Palasantzas, and J. T. M. De Hosson, Physical Review B 60, 9157 (1999).
115 C. Deng, Y. Zhang, J. Ma, Y. Lin, and C. W. Nan, Journal of Applied Physics 102, 074114 (2007).