簡易檢索 / 詳目顯示

研究生: 温祖承
Wen, Tsu Chen
論文名稱: 研發甲醇-過氧化氫氧化蒸汽重組製氫之研究
Development of oxidative steam reforming of methanol-hydrogen peroxide for hydrogen production
指導教授: 黃鈺軫
Huang, Yuh Jeen
口試委員: 葉君棣
Yeh, Chuin Tih
汪成斌
Wang, Chen Bin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 94
中文關鍵詞: 甲醇氧化蒸氣重組反應過氧化氫氧空缺一氧化碳
外文關鍵詞: OSRM, hydrogen peroxide, cerium, oxygen vacancies, CO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用過氧化氫和甲醇混合應用於甲醇氧化蒸氣重組(H2O2-OSRM)反應,以液態進樣於甲醇重組器,能有助於燃料電池的整合。在H2O2-OSRM的測試當中,過氧化氫會在150℃能完全分解成水跟氧氣,當甲醇和過氧化氫體積比為4:1(O2/MeOH =0.089、H2O/MOH=0.514),在250℃的環境下,CuPd2/Ce10Zn (30 wt% Cu, 2 wt% Pd, 10 wt% Ce and 58wt% Zn)和CuPd2/Ce20Zn (30 wt% Cu, 2 wt% Pd, 20 wt% Ce and 48wt% Zn)兩種觸媒甲醇轉換率將近80%,氫氣產率2.5,CO選擇率也只有3%,而且當觸媒中鈰的含量提高時,更可以有效的降低CO的產生;隨著甲醇和過氧化氫體積比提升至3:1(O2/MeOH =0.119、H2O/MOH=0.685),因O2/MeOH的提升,能增進觸媒在低溫的甲醇轉換率。將觸媒經過氫氣預還原後應用至H2O2-OSRM系統中,發現可以有效改善觸媒在低溫的反應性。和傳統的SRM (H2O/MOH=0.514和H2O/MOH=0.685)做個比較,H2O2-OSRM的系統中,整體的甲醇轉換率有明顯的提升(~30%CMeOH)且在250℃的產氫量比SRM高了1.7倍。CuPd2/Ce10Zn 和CuPd2/Ce20Zn兩種觸媒在傳統的OSRM (O2/MeOH =0.3、H2O/MOH=0.514)反應中擁有很好的反應性,在250℃的環境下,甲醇轉換率就接近90%而氫氣產率接近2.5,且在低溫150℃時,甲醇轉換率也可以維持60%,整體的CO選擇率只有0-4%。由於H2O2-OSRM系統中的氧氣含量限制於過氧化氫的濃度,使得反應性無法更進一步的提升。
      此外,為瞭解觸媒的鈰含量與降低CO之關聯,氧氣程溫脱附(O2-TPD)、CO程溫還原(CO-TPR)以及即時偵測IR光譜儀被利用來探討鈰的氧空缺對於反應性以及CO氧化的影響。結果顯示,和CuZn (30 wt% Cu and 70 wt% Zn)觸媒比較,CuPd2/Ce20Zn可以增加約10倍的氧氣以及CO的吸附量,同時能促進CO在更低的溫度下(90℃)就進行氧化反應。


    This study develops a hydrogen production process from oxidative steam reforming of methanol using hydrogen peroxide as the oxidant (H2O2-OSRM). The liquid phase of H2O2 with methanol will facilitate the design and assembly of fuel cells. In the H2O2-OSRM system test, H2O2 could decompose completely at 150℃. For the catalytic activity of the catalysts in H2O2-OSRM reaction with MeOH:H2O2 volume ratio of 4:1(O2/MeOH =0.089, H2O/MOH=0.514), both CuPd2/Ce10Zn (30 wt% Cu, 2 wt% Pd, 10 wt% Ce and 58wt% Zn) and CuPd2/Ce20Zn (30 wt% Cu, 2 wt% Pd, 20 wt% Ce and 48wt% Zn) catalysts showed ~80% of CMeOH, ~2.4 of YH2, and only 3% of SCO at 250℃. With increasing the addition of Ce, the SCO can be reduced, even to 0%. In MeOH:H2O2 volume ratio of 3:1 (O2/MeOH =0.119, H2O/MOH=0.685), which can provide more oxygen to enhance catalytic activity of catalysts at low temperature. When catalysts were pre-reduced before reaction, it not only improve catalytic activity but also decrease SCO in H2O2-OSRM system .On the whole, compared with H2O2-OSRM and SRM at the same ratio of H2O/MeOH, H2O2-OSRM system can provide more hydrogen than SRM reaction. It approximately provided 1.7 times of hydrogen production at 250℃. The catalytic activity of CuPd2/Ce10Zn and CuPd2/Ce20Zn catalysts through OSRM reaction (O2/MeOH=0.3H2O/MeOH=0.514) showed good performance. CuPd2/Ce10Zn and CuPd2/Ce20Zn catalysts performed ~90% of CMeOH, ~ 2.5 of YH2 at 250℃, and the Sco was kept 0~4% at whole reaction. Since the oxygen content was limited by the concentration of hydrogen peroxide (~50%), the reactivity in H2O2-OSRM system cannot further be enhanced.
      To more realize the effect of Ce promoter and abatement of CO, O2-TPD, CO-TPR and in-situ DRIFT were investigated to explore the relation between Ce promoter and O2 and CO chemisorption. It obviously shows that more O2 and CO were adsorbed on catalyst with Ce. CuPd2/Ce20Zn catalyst has 10 times intensity of CO chemisorption than CuZn (30 wt% Cu and 70 wt% Zn) catalyst. The presence of CeO2 with oxygen vacancies enhanced the affinity to adsorb oxygen atoms of reactants, as well as even can catalyze CO oxidation at low temperature (90℃).

    Abstract I 摘要 II 誌謝 III Category IV List of figures VII List of table XI Chapter 1. Motivation and approaches 1 Chapter 2. Background and Introduction 3 2-1 Use of the energy 3 2-2 Fuel cells 4 2-3 Proton exchange membrane fuel cells (PEMFCs) 10 2-4 Production of hydrogen from methanol 14 2-5 Paper review of production hydrogen from methanol reforming 18 2-5-1 Cu based catalyst 18 2-5-2 Promoter of Pd 19 2-5-3 Promoter of Ce 21 Chapter 3. Experimental section 22 3-1 Chemicals and solutions 22 3-2 Catalysts preparation method 23 3-2-1 Cu/ZnO (Cu/Zn) (30 wt% Cu and 70 wt% Zn) 23 3-2-2 CuPd/ZnO (CuPd2/Zn) (30 wt% Cu, 2 wt% Pd and 68 wt% Zn) 24 3-2-3 CuPd/CeZnO (CuPd2/CexZn) (30 wt% Cu, 2 wt% Pd, 10-68 wt% Ce and 58-0 wt% Zn) 25 3-3 Inductively coupled plasma-mass spectrometry (ICP-Mass) 27 3-4 Vacuum system and nitrogen physical adsorption 28 3-5 Transmission electron microscopy (TEM) 31 3-6 Powder X-ray diffractometer (XRD) 32 3-7 Temperature programmed reduction (TPR) 33 3-8 N2O Chemisorption 35 3-9 Oxygen temperature programmed desorption (O2-TPD) 36 3-10 In-situ diffuse reflectance infrared fourier transform spectroscopy (in-situ DRIFTS) 38 3-11 Catalytic activity 39 Chapter 4. Results and discussion 42 4-1 Characterization of catalysts 42 4-1-1 Transmission electron microscopy 42 4-1-2 Hydrogen temperature programmed reduction 45 4-1-3 X-ray powder diffraction of the catalysts 48 4-2 Catalytic activity 51 4-2-1 catalytic activity of OSRM 51 4-2-2 catalytic activity of SRM 54 4-2-4 catalytic activity of H2O2-OSRM 58 4-2-3 H2O2-OSRM reaction over reduced catalysts 64 4-3 The mechanism of CO oxidation on Ce with oxygen vacancies 67 4-3-1 In-situ DRIFT 67 4-3-2 Temperature-programmed desorption of O2 70 4-3-3 temperature-programmed reduction of CO 72 Conclusion 76 Reference 77

    [1] M. L. Cubeiro and J. L. G. Fierro, Selective Production of Hydrogen by Partial Oxidation of Methanol over ZnO-Supported Palladium Catalysts, Journal of Catalysis, 179 (1998) 150-162.
    [2] L. Mo, X. Zheng, C.T. Yeh, Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures, Chemical Communications, (2004) 1426-1427.
    [3] J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3, Journal of Catalysis, 219 (2003) 389-403.
    [4] b. S. Velua, Ã and K. Suzukia, Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance, Topics in Catalysis, 22 (2003) 235-244.
    [5] M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix, Applied Catalysis B: Environmental, 77 (2007) 46-57.
    [6] J. Agrell, H. Birgersson, M. Boutonnet, Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation, Journal of Power Sources, 106 (2002) 249-257.
    [7] S. Velu, K. Suzuki, Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance, Topics in Catalysis, 22 (2003) 235-244.
    [8] Space Applications of Hydrogen and Fuel Cells.
    [9] The Department of Energy hydrogen and fuel cells program plan: an integrated strategic plan for the research, development, and demonstration of hydrogen and fuel cell technologies, US Department of Energy, 2011.
    [10] A.D. James Larminie, Fuel Cell Systems Explained (Second Edition), 2003.
    [11] Fuel Cell Handbook(Seventh Edition), U.S. Department of Energy Office of Fossil Energy 2004.
    [12] B. Kakati, D. Deka, Effect of Resin Matrix Precursor on the Properties of Graphite Composite Bipolar Plate for PEM Fuel Cell, Energy & Fuels, 21 (2007) 1681-1687.
    [13] K. Müller, J. Völkl, W. Arlt, Thermodynamic Evaluation of Potential Organic Hydrogen Carriers, Energy Technology, 1 (2013) 20-24.
    [14] J.J. Verendel, P. Dinér, Efficient, Low Temperature Production of Hydrogen from Methanol, ChemCatChem, 5 (2013) 2795-2797.
    [15] P.T. T. N. Veziroglu, Hydrogen Energy Progress VIII, 1990.
    [16] H. Kahrom, Proceedings of Eurpean Fuel cell Forum Portable Fuel cell Conference, Lucerne, 1990.
    [17] B. Lindström, L.J. Pettersson, Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications, International Journal of Hydrogen Energy, 26 (2001) 923-933.
    [18] T. Takahashi, M. Inoue, T. Kai, Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys, Applied Catalysis A: General, 218 (2001) 189-195.
    [19] G.M.D. T.S.R. Prasada Rao, Recent Advances in Basic and Applied Aspects of Industrial Catalysis, India, 1997.
    [20] L. Alejo, R. Lago, M.A. Peña, J.L.G. Fierro, Partial oxidation of methanol to produce hydrogen over CuZn-based catalysts, Applied Catalysis A: General, 162 (1997) 281-297.
    [21] C. Cao, K.L. Hohn, Study of reaction intermediates of methanol decomposition and catalytic partial oxidation on Pt/Al2O3, Applied Catalysis A: General, 354 (2009) 26-32.
    [22] S. Schuyten, E.E. Wolf, Selective Combinatorial Studies on Ce and Zr Promoted Cu/Zn/Pd Catalysts for Hydrogen Productio via Methanol Oxidative Reforming, Catalysis Letters, 106 (2006) 7-14.
    [23] Z. Wang, J. Xi, W. Wang, G. Lu, Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts, Journal of Molecular Catalysis A: Chemical, 191 (2003) 123-134.
    [24] S. Velu, K. Suzuki, T. Osaki, Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides, Catalysis Letters, 62 (1999) 159-167.
    [25] B. Charles, Purpose in the Universe: A Search for Wholeness, Zygon, 1971.
    [26] G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Today, 75 (2002) 157-167.
    [27] A.J. Dyakonov, Abatement of CO from relatively simple and complex mixtures I. Oxidation on Pd-Ag/zeolite catalysts, Applied Catalysis B: Environmental, 45 (2003) 241-255.
    [28] Y.F. Han, M. Kinne, R.J. Behm, Selective oxidation of CO on Ru/γ-Al2O3 in methanol reformate at low temperatures, Applied Catalysis B: Environmental, 52 (2004) 123-134.
    [29] T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira, Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation, Applied Catalysis A: General, 303 (2006) 62-71.
    [30] J.B. Wang, S.C. Lin, T.J. Huang, Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria, Applied Catalysis A: General, 232 (2002) 107-120.
    [31] D.J.M. Jeremy Patt, Cory Phillips and Levi Thompson Molybdenum carbide catalysts for water–gas shift, Catalysis Letters, 65 (2000) 193-195.
    [32] S. Liu, K. Takahashi, K. Uematsu, M. Ayabe, Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component, Applied Catalysis A: General, 277 (2004) 265-270.
    [33] P.P. Colin Barnes, Quanmin Guo and Michael Bowker, Molecular-beam studies of methanol partial oxidation on Cu(110), Journal of the Chemical Society, Faraday Transactions, 86 (1990) 2693-2699.
    [34] J. Agrell, M. Boutonnet, I. Melián-Cabrera, J. Fierro, Production of hydrogen from methanol over binary Cu/ZnO catalysts Part I. Catalyst preparation and characterisation, Applied Catalysis A: General, 253 (2003) 201-211.
    [35] J. Agrell, M. Boutonnet, J. Fierro, Production of hydrogen from methanol over binary Cu/ZnO catalysts Part II. Catalytic activity and reaction pathways, Applied Catalysis A: General, 253 (2003) 213-223.
    [36] W.H. Cheng, Reaction and XRD studies on Cu based methanol decomposition catalysts: Role of constituents and development of high-activity multicomponent catalysts, Applied Catalysis A: General, 130 (1995) 13-30.
    [37] S. Liu, K. Takahashi, M. Ayabe, Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading, Catalysis Today, 87 (2003) 247-253.
    [38] S. Liu, K. Takahashi, K. Fuchigami, K. Uematsu, Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation, Applied Catalysis A: General, 299 (2006) 58-65.
    [39] S. Liu, K. Takahashi, H. Eguchi, K. Uematsu, Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials, Catalysis Today, 129 (2007) 287-292.
    [40] S. Schuyten, P. Dinka, A.S. Mukasyan, E. Wolf, A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol, Catalysis Letters, 121 (2008) 189-198.
    [41] T.J. Huang, H.M. Chen, Hydrogen production via steam reforming of methanol over Cu/(Ce,Gd)O2−x catalysts, International Journal of Hydrogen Energy, 35 (2010) 6218-6226.
    [42] B.L. Kniep, T. Ressler, A. Rabis, F. Girgsdies, M. Baenitz, F. Steglich, R. Schlögl, Rational Design of Nanostructured Copper–Zinc Oxide Catalysts for the Steam Reforming of Methanol, Angewandte Chemie International Edition, 43 (2003) 112-115.
    [43] T. Ressler, B.L. Kniep, I. Kasatkin, R. Schlögl, The Microstructure of Copper Zinc Oxide Catalysts: Bridging the Materials Gap, Angewandte Chemie International Edition, 44 (2005) 4704-4707.
    [44] W.H. Cheng, I.W. Chen, J.S. Liou, S.S. Lin, Supported Cu catalysts with yttria-doped ceria for steam reforming of methanol, Topics in Catalysis, 22 (2003) 225-233.
    [45] P. Clancy, J.P. Breen, J. Ross, The preparation and properties of coprecipitated Cu–Zr–Y and Cu–Zr–La catalysts used for the steam reforming of methanol, Catalysis Today, 127 (2007) 291-294.
    [46] H. Jeong, K. Kim, T. Kim, C. Ko, H. Park, I. Song, Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst, Journal of Power Sources, 159 (2006) 1296-1299.
    [47] G.S. Wu, D.S. Mao, G.Z. Lu, Y. Cao, K.N. Fan, The Role of the Promoters in Cu Based Catalysts for Methanol Steam Reforming, Catalysis Letters, 130 (2009) 177-184.
    [48] L. Yong-Feng, D. Xin-Fa, L. Wei-Ming, Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol, International Journal of Hydrogen Energy, 29 (2004) 1617-1621.
    [49] G. Águila, J. Jiménez, S. Guerrero, F. Gracia, B. Chornik, S. Quinteros, P. Araya, A novel method for preparing high surface area copper zirconia catalysts Influence of the preparation variables, Applied Catalysis A: General, 360 (2009) 98-105.
    [50] J.P. Shen, C. Song, Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells, Catalysis Today, 77 (2002) 89-98.
    [51] T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, K. Takehira, Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol, Applied Catalysis A: General, 263 (2004) 249-253.
    [52] N.M. Storozhok, M.G. Perevozkina, G.A. Nikiforov, I.F. Rusina, E.B. Burlakov, Correlation between the structure and inhibiting activity of phenosan derivatives, Kinetics and Catalysis, 45 (2004) 813-820.
    [53] C.Z. Yao, L.C. Wang, Y.M. Liu, G.S. Wu, Y. Cao, W.L. Dai, H.Y. He, K.N. Fan, Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts, Applied Catalysis A: General, 297 (2006) 151-158.
    [54] S. Sa, H. Silva, L. Brandao, J.M. Sousa, A. Mendes, Catalysts for methanol steam reforming-A review, Appl Catal B-Environ, 99 (2010) 43-57.
    [55] Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, Highly active copper/ceria catalysts for steam reforming of methanol, Applied Catalysis A: General, 223 (2002) 137-145.
    [56] P.H. Matter, D.J. Braden, U.S. Ozkan, Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts, Journal of Catalysis, 223 (2004) 340-351.
    [57] P.H. Matter, U.S. Ozkan, Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2, Journal of Catalysis, 234 (2005) 463-475.
    [58] P.P.C. Udani, P.V.D.S. Gunawardana, H. Lee, D. Kim, Steam reforming and oxidative steam reforming of methanol over CuO–CeO2 catalysts, International Journal of Hydrogen Energy, 34 (2009) 7648-7655.
    [59] S.D. Jones, H.E. Hagelin-Weaver, Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3, Applied Catalysis B: Environmental, 90 (2009) 195-204.
    [60] B. Lindström, L.J. Pettersson, G.P. Menon, Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles, Applied Catalysis A: General, 234 (2002) 111-125.
    [61] S. Patel, K.K. Pant, Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol, Journal of Power Sources, 159 (2006) 139-143.
    [62] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F. Ohashi, Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation, Journal of Catalysis, 194 (2000) 373-384.
    [63] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts, Applied Catalysis A: General, 213 (2001) 47-63.
    [64] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, Production of hydrogen from oxidative steam reforming of methanol - I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor, Journal of Catalysis, 228 (2004) 43-55.
    [65] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, Production of hydrogen from oxidative steam reforming of methanol - II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts, Journal of Catalysis, 228 (2004) 56-65.
    [66] T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming, Journal of Molecular Catalysis A: Chemical, 268 (2007) 185-194.
    [67] T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming, J Mol Catal a-Chem, 268 (2007) 185-194.
    [68] T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, K. Takehira, Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol, Appl Catal a-Gen, 263 (2004) 249-253.
    [69] A. Mastalir, B. Frank, A. Szizybalski, H. Soerijanto, A. Deshpande, M. Niederberger, R. Schomäcker, R. Schlögl, T. Ressler, Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study, Journal of Catalysis, 230 (2005) 464-475.
    [70] S. Patel, K.K. Pant, Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol, Journal of Porous Materials, 13 (2006) 373-378.
    [71] M. Haruta, Size- and support-dependency in the catalysis of gold, Catal Today, 36 (1997) 153-166.
    [72] M. Haruta, M. Date, Advances in the catalysis of Au nanoparticles, Appl Catal a-Gen, 222 (2001) 427-437.
    [73] Z. Xiao, A.R. Laplante, Characterizing and recovering the platinum group minerals - a review, Miner Eng, 17 (2004) 961-979.
    [74] Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai, M. Haruta, Catalytic methanol decomposition at low temperatures over palladium supported on metal oxides, Appl Catal a-Gen, 171 (1998) 123-130.
    [75] M.P. Kapoor, Y. Ichihashi, K. Kuraoka, Y. Matsumura, Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide, J Mol Catal a-Chem, 198 (2003) 303-308.
    [76] M.P. Kapoor, Y. Ichihashi, K. Kuraoka, W.J. Shen, Y. Matsumura, Catalytic methanol decomposition over palladium deposited on mesoporous cerium oxide, Catalysis Letters, 88 (2003) 83-87.
    [77] M. Lenarda, E. Moretti, L. Storaro, P. Patrono, F. Pinzari, E. Rodriguez-Castellon, A. Jimenez-Lopez, G. Busca, E. Finocchio, T. Montanari, R. Frattini, Finely dispersed Pd-Zn catalyst supported on an organized mesoporous alumina for hydrogen production by methanol steam reforming, Appl Catal a-Gen, 312 (2006) 220-228.
    [78] M.L. Cubeiro, J.L.G. Fierro, Partial oxidation of methanol over supported palladium catalysts, Appl Catal a-Gen, 168 (1998) 307-322.
    [79] M.L. Cubeiro, J.L.G. Fierro, Selective production of hydrogen by partial oxidation of methanol over ZnO-Supported palladium catalysts, Journal of Catalysis, 179 (1998) 150-162.
    [80] N. Iwasa, N. Takezawa, New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol, Topics in Catalysis, 22 (2003) 215-224.
    [81] P. Bichon, M. Asheim, A. Jordal, T. Sperle, M. Fathi, A. Holmen, E.A. Blekkan, Hydrogen from methanol steam-reforming over Cu-based catalysts with and without Pd promotion, International Journal of Hydrogen Energy, 32 (2007) 1799-1805.
    [82] S. Schuyten, S. Guerrero, J.T. Miller, T. Shibata, Characterization and oxidation states of Cu and Pd in Pd–CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation, Applied Catalysis A, (2009).
    [83] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, Production of hydrogen via combined steam reforming of methanol over CuO–CeO2 catalysts, Catalysis Communications, 5 (2004) 231-235.
    [84] M.F. Luo, J. Chen, L.S. Chen, J.Q. Lu, Z. Feng, C. Li, Structure and redox properties of CexTi1-xO2 solid solution, Chemistry of Materials, 13 (2001) 197-202.
    [85] H.S. Roh, K.W. Jun, W.S. Dong, S.E. Park, Y.S. Baek, Highly stable Ni catalyst supported on Ce-ZrO2 for oxy-steam reforming of methane, Catalysis Letters, 74 (2001) 31-36.
    [86] E. Moretti, M. Lenarda, L. Storaro, A. Talon, T. Montanari, G. Busca, E. Rodríguez-Castellón, A. Jiménez-López, M. Turco, G. Bagnasco, R. Frattini, One-step synthesis of a structurally organized mesoporous CuO-CeO2-Al2O3 system for the preferential CO oxidation, Applied Catalysis A: General, 335 (2008) 46-55.
    [87] S.Y. Huang, National Tsing Hua University,Hsinchu, Taiwan, ROC, (2006).
    [88] G. Fierro, M. LoJacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction, Appl Catal a-Gen, 137 (1996) 327-348.
    [89] Y.J. Huang, K.L. Ng, H.-Y. Huang, The effect of gold on the copper-zinc oxides catalyst during the partial oxidation of methanol reaction, International Journal of Hydrogen Energy, 36 (2011) 15203-15211.
    [90] M.P. Francisco, V.R. Mastelaro, P.A.P. Nascente, A.O. Florentino, Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO/CeO2-TiO2Catalysts, The Journal of Physical Chemistry B, 105 (2001) 10515-10522.
    [91] D. Zhang, H. Yin, R. Zhang, J. Xue, T. Jiang, Gas Phase Hydrogenation of Maleic Anhydride to γ-Butyrolactone by Cu–Zn–Ce Catalyst in the Presence of n-Butanol, Catalysis Letters, 122 (2008) 176-182.
    [92] W. Shan, Z. Feng, Z. Li, J. Zhang, W. Shen, C. Li, Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation–combustion methods, Journal of Catalysis, 228 (2004) 206-217.
    [93] J.B. Wang, C.H. Li, T.J. Huang, Study of Partial Oxidative Steam Reforming of Methanol over Cu–ZnO/samaria-doped Ceria Catalyst, Catalysis Letters, 103 (2005) 239-247.
    [94] S. Patel, K.K. Pant, Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts, Chemical Engineering Science, 62 (2007) 5436-5443.
    [95] C.C. Chang, C.C. Hsu, C.T. Chang, Y.P. Chen, B.J. Liaw, Y.Z. Chen, Effect of noble metal on oxidative steam reforming of methanol over CuO/ZnO/Al2O3 catalysts, International Journal of Hydrogen Energy, 37 (2012) 11176-11184.
    [96] W. Liu, M. Flytzani-Stephanopoulos, Total Oxidation of Carbon-Monoxide and Methane over Transition Metal-Fluorite Oxide Composite Catalysts .2. Catalyst Characterization and Reaction-Kinetics, Journal of Catalysis, 153 (1995) 317-332.
    [97] G.J.J. Bartley, R. Burch, Support and Morphological Effects in the Synthesis of Methanol over Cu/Zno, Cu/Zro2 and Cu/Sio2 Catalysts, Appl Catal, 43 (1988) 141-153.
    [98] H. Zhu, P. Zhang, S. Dai, Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis, ACS Catalysis, 5 (2015) 6370-6385.
    [99] C.W.C. Jr, J.L. Falconer, Spillover in heterogeneous catalysis, Chemical reviews, (1995).
    [100] L. Kuan-Yi, H. Yuh-Jeen, Low CO generation on tunable oxygen vacancies of non-precious metallic Cu/ZnO catalysts for partial oxidation of methanol reaction, Applied Catalysis B: Environmental, 150-151 (2014) 506514.
    [101] Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai, M. Haruta, Catalytic methanol decomposition at low temperatures over palladium supported on metal oxides, Applied Catalysis A: General, 171 (1998) 123-130.
    [102] M.P. Kapoor, Y. Ichihashi, K. Kuraoka, Y. Matsumura, Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide, Journal of Molecular Catalysis A: Chemical, 198 (2003) 303-308.
    [103] M. Lenarda, E. Moretti, L. Storaro, P. Patrono, F. Pinzari, E. Rodríguez-Castellón, A. Jiménez-López, G. Busca, E. Finocchio, T. Montanari, R. Frattini, Finely dispersed Pd-Zn catalyst supported on an organized mesoporous alumina for hydrogen production by methanol steam reforming, Applied Catalysis A: General, 312 (2006) 220-228.
    [104] M.L. Cubeiro, J.L.G. Fierro, Partial oxidation of methanol over supported palladium catalysts, Applied Catalysis A: General, 168 (1998) 307-322.
    [105] C.C. Chang, C.T. Chang, S.J. Chiang, B.J. Liaw, Y.-Z. Chen, Oxidative steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts, International Journal of Hydrogen Energy, 35 (2010) 7675-7683.
    [106] Y.-H. Chin, R. Dagle, J. Hu, A.C. Dohnalkova, Y. Wang, Steam reforming of methanol over highly active Pd/ZnO catalyst, Catalysis Today, 77 (2002) 79-88.
    [107] N. Iwasa, S. Masuda, N. Ogawa, N. Takezawa, Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction, Applied Catalysis A: General, 125 (1995) 145-157.
    [108] N. Iwasa, T. Mayanagi, N. Ogawa, K. Sakata, N. Takezawa, New catalytic functions of Pd-Zn, Pd-Ga, Pd-In, Pt-Zn, Pt-Ga and Pt-In alloys in the conversions of methanol, Catalysis Letters, 54 (1998) 119-123.
    [109] Y. Wang, J. Zhang, X.U. Hengyong, X. Bai, Reduction of Pd/ZnO Catalyst and Its Catalytic Activity for Steam Reforming of Methanol, Chinese Journal of Catalysis, 28 (2007) 234-238.
    [110] A. Wolf, F. Schuth, A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl Catal a-Gen, 226 (2002) 1-13.
    [111] W. Liu, M. Flytzani-Stephanopoulos, Total Oxidation of Carbon-Monoxide and Methane over Transition Metal-Fluorite Oxide Composite Catalysts .1. Catalyst Composition and Activity, Journal of Catalysis, 153 (1995) 304-316.
    [112] C. Bozo, N. Guilhaume, J.M. Herrmann, Role of the ceria-zirconia support in the reactivity of platinum and palladium catalysts for methane total oxidation under lean conditions, Journal of Catalysis, 203 (2001) 393-406.
    [113] Z.Y. Pu, X.S. Liu, A.P. Jia, Y.L. Xie, J.Q. Lu, M.F. Luo, Enhanced activity for CO oxidation over Pr- and Cu-doped CeO(2) catalysts: Effect of oxygen vacancies, J Phys Chem C, 112 (2008) 15045-15051.
    [114] K.Y. Lee, Y.J. Huang, Low CO generation on tunable oxygen vacancies of non-precious metallic Cu/ZnO catalysts for partial oxidation of methanol reaction, Applied Catalysis B: Environmental, 150 (2014) 506-514.
    [115] A. Hornés, P. Bera, A. Cámara, D. Gamarra, G. Munuera, A. Martínez-Arias, CO-TPR-DRIFTS-MS in situ study of CuO/Ce1−xTbxO2−y (x=0, 0.2 and 0.5) catalysts: Support effects on redox properties and CO oxidation catalysis, Journal of Catalysis, 268 (2009) 367-375.
    [116] Y.M. Choi, H. Abernathy, H.T. Chen, M.C. Lin , M. Liu, Characterization of O2–CeO2 Interactions Using In Situ Raman Spectroscopy and First‐Principle Calculations, ChemPhysChem, 7 (2006) 1957-1963.
    [117] J. Li, G. Lu, G. Wu, D. Mao, Y. Wang, Y. Guo, Promotional role of ceria on cobaltosic oxide catalyst for low-temperature CO oxidation, Catalysis Science & Technology, 2 (2012) 1865-1871.
    [118] H. Zhu, Z. Qin, W. Shan, W. Shen, J. Wang, Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, Journal of Catalysis, 225 (2004) 267-277.
    [119] J.A. van Bokhoven, C. Louis, J.T. Miller, M. Tromp, O.V. Safonova, P. Glatzel, Activation of oxygen on gold/alumina catalysts: in situ high-energy-resolution fluorescence and time-resolved X-ray spectroscopy, Angew Chem Int Ed Engl, 45 (2006) 4651-4654.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE