研究生: |
朱泓瑜 CHU, HONG-YU |
---|---|
論文名稱: |
考慮不確定性下急性缺血性中風病患之綜合中風中心選擇分佈式穩健模型 Distributionally robust optimization for comprehensive stroke center selection in acute ischemic stroke cases under uncertainties |
指導教授: |
李雨青
Lee, Yu-Ching |
口試委員: |
郭佳瑋
Kuo, Chia-Wei 吳浩庠 Wu, Hao-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 31 |
中文關鍵詞: | 分佈穩健優化 、中風醫療 、風險規避 、模糊集 |
外文關鍵詞: | Distributionally Robust Optimization, Stroke Care, Risk-averse, Ambiguity Set |
相關次數: | 點閱:43 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「急性缺血性中風」為一種由血管阻塞引起的嚴重神經系統疾病,導致大腦缺氧,並可能造成失語、癱瘓甚至死亡等嚴重後果。在醫學領域,這種情況已成為一門重要且值得注意的健康議題。由於中風的嚴重後果以及病患於綜合中風中心(CSC)之等待時間的高度變異性,對於決策者來說,選擇將病患派送往哪間中風中心(CSC)是一個棘手的問題。本篇論文探討了綜合中風中心 (CSC) 之選擇問題,即決定將病人送往哪間中風中心。此決策的目標是最小化時間之總和,包括了運輸時間以及病患在中風中心的等待時間。基於真實數據,我們建構了等待時間之分布模糊集,其中包含平均值、平均絕對偏差和支撐域。這些敘述性統計數據是由中風中心的記錄中估計而得。
在本篇論文中,我們協助風險規避的決策者建構一個分佈穩健模型,該模型根據模糊集中最壞情況之機率分佈來評估等待時間。由於此模型在數學上難以直接求解,我們使用對偶定理將該模型轉換為一個混整數線性規劃模型以便求解。除此之外,實驗數據表明,我們的模型於最壞情況以及上十分位數的表現優於現有的隨機規劃。
關鍵字:分佈穩健優化,中風醫療,風險規避,模糊集
"Acute ischemic stroke" is a severe neurological disorder caused by vascular obstruction, leading to cerebral hypoxia and potentially resulting in aphasia, paralysis, or even death. In the medical field, this condition has become a significant and noteworthy health issue. Due to the serious consequences of stroke and the high variability of waiting time in comprehensive stroke center (CSC), it is a tough question for the decision-maker to decide which CSC to send the stroke patient to. This paper considers a comprehensive stroke center (CSC) selection (CSCS) problem, determining which CSC the patient should be sent to. The solution is made by minimizing the total time, including both transportation time and waiting time in CSC. According to real-life waiting time’s data, we construct an ambiguity set of distributions, that includes mean values, mean absolute deviations, and a support set. These descriptive statistics can be estimated from CSC experience data. To sum up, we assist risk-averse managers in developing a distributionally robust model for the CSCS problem, which the waiting times are evaluated according to the worst-case probability distribution in the ambiguity set. Owing to its complex calculation, we reformulated the problem as a mixed integer linear programming model by duality theorem. In additional, computational experiments demonstrate that our model outperforms existing stochastic programming in both worst-case and upper-decile performance.
Keywords: Distributionally Robust Optimization, Stroke Care, Risk-averse, Ambiguity Set
References
Lahr, M. M., van der Zee, D. J., Luijckx, G. J., & Buskens, E. (2013). Optimising acute stroke care organisation: a simulation study to assess the potential to increase intravenous thrombolysis rates. BMC medical informatics and decision making, 13(1), 1-10.
Sporns, P. B., Fischer, U., Katan, M., Heldner, M. R., Zumofen, D. W., Kaesmacher, J., ... & Psychogios, M. N. (2024). Simulation of transportation of acute stroke patients in border regions. Scientific Reports, 14(1), 1-10.
Meretoja, A., Strbian, D., Mustanoja, S., Tatlisumak, T., Lindsberg, P. J., & Kaste, M. (2012). Reducing in-hospital delay to 20 minutes in stroke thrombolysis. Neurology, 79(4), 306-313.
Na Geng (2017) Stochastic and Dynamic Programming for Improving the Reservation Process for Stroke Patients Assigned to Regional Thrombectomy Services. World Scientific.
Ben-Tal, A., & Nemirovski, A. (2009). Robust optimization—methodology and applications. Mathematics of Operations Research, 23(4), 769-805.
Rahimian, H., & Mehrotra, S. (2019). Distributionally robust optimization: A review. arXiv preprint arXiv:1908.05659.
Ivanov, I.G.; Kumchev, Y.; Hooper, V.J. An Optimization Precise Model of Stroke Data to Improve Stroke Prediction. Algorithms 2023, 16, 417.
Dimitris Bertsimas, Jean Pauphilet (2023) Hospital-Wide Inpatient Flow Optimization.
Garcia, B.L., Bekker, R., van der Mei, R. et al. Optimal patient protocols in regional acute stroke care. Health Care Manag Sci 24, 515–530 (2021).
Hossein Malekmohammadi, Ahmad Makui (2019) A multi-objective robust optimization model to design a network for Emergency Medical Services under uncertainty conditions: A case study.
Karimi, M., Mohammadi, E., Jafari, H., Ghaeli, M & Eskoruchi, A. (2022). A robust linear model for the maximum expected coverage location problem considering the relative coverage. Journal of Future Sustainability, 2(2), 39-48.
Delage, E., & Ye, Y. (2010). Distributionally robust optimization under moment uncertainty with application to data-driven problems. Operations Research, 58(3), 595-612.
Zhongqi Wu, Hui Jiang, Xiaoyu Liang, Yangye Zhou (2024), Multi-period distributionally robust emergency medical service location model with customized ambiguity sets, Transportation Research Part E: Logistics and Transportation Review,
Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., ... & Muntner, P. (2017). Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation, 135(10), e146-e603.
Mistry, E. A., Mistry, A. M., Nakawah, M. O., et al. (2017). "Mechanical Thrombectomy Outcomes With or Without Intravenous Thrombolysis in Stroke Patients: A Meta-Analysis." Stroke, 48(9), 2450–2456.
Meyer, F. B., Swanson, J. W., Masdeu, J. C., & Mellinger, J. F. (2011). The comprehensive stroke center: What it means and how to achieve it. Neurosurgery, 68(2), 471-483.
Gerschenfeld, G., Muresan, I. P., Blanc, R., et al. (2017). "Two Paradigms for Endovascular Thrombectomy After Intravenous Thrombolysis for Acute Ischemic Stroke." JAMA Neurology, 74(5), 549–556.
Shehadeh, K. S., & Padman, R. (2021). A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity. European Journal of Operational Research, 290(3), 901-913.
Mulder MJHL, Jansen IGH, Goldhoorn RB, Venema E, Chalos V, Compagne KCJ, Roozenbeek B, Lingsma HF, et al; MR CLEAN Registry Investigators (2018). Time to Endovascular Treatment and Outcome in Acute Ischemic Stroke: MR CLEAN Registry Results. Circulation, 138(3), 232-240.
Mak, H. Y., Rong, Y., & Zhang, J. (2014). Appointment scheduling with limited distributional information. Management Science, 61(2) 316-334.
Rahimian, H., & Mehrotra, S. (2022). Frameworks and results in distributionally robust optimization. Open Journal of Mathematical Optimization, 3, 1-85.
Amir Ardestani-Jaafari & Beste Kucukyazici, 2022. "Improving Patient Transfer Protocols for Regional Stroke Networks," Management Science, INFORMS, vol. 68(9), pages 6610-6633, September.
Jessalyn K Holodinsky, Tyler S Williamson, Andrew M Demchuk, Henry Zhao, Luke Zhu, Michael J Francis, Mayank Goyal, Michael D Hill, Noreen Kamal JAMA Neurology 2018 December 2
Schaefer JH, Kurka N, Keil F, Wagner M, Steinmetz H, Pfeilschifter W, Bohmann FO and on behalf of the GSR-ET Study Group (2022) Endovascular treatment for ischemic stroke with the drip-and-ship model—Insights from the German Stroke Registry. Front. Neurol. 13:973095. doi: 10.3389/fneur.2022.973095