簡易檢索 / 詳目顯示

研究生: 顏精一
JingYi Yan
論文名稱: 高解析能量過濾電鏡分析奈米材料系統電子組態及結構之變化
The electronic configuration and structure analysis in nanomaterial with high resolution EFTEM
指導教授: 開執中
Ji-Jung Kai
陳福榮
Fu-Rong Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 137
中文關鍵詞: 穿透式電子顯微鏡電子能量損失能譜氧化鋅奈米線連續能譜影像法
外文關鍵詞: TEM, EELS, Zno nanowire, ESI
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文主要探討如何增進穿透式電子顯微鏡與電子能量損失譜儀對於奈米材料系統的分析能力,並解決現今穿透電鏡在分析奈米材料系統時所遭遇到的難題。在奈米材料系統中,材料的組成、結構以及特性均會因為量子效應以及表面效應而有所改變,上述三個現象對於發展奈米科技佔有舉足輕重的角色,因為若是無法正確的掌握材料的特性,則無法有效的將材料應用於奈米元件上。因此對於現今的奈米科技而言,當務之急便是要發展在奈米尺度下量測材料性質的工具或技術。然而,大多數的分析工具並無法具有奈米尺度甚至近原子尺寸的空間解析度,故在分析上均是算是統計的結果而並非個別奈米材料的性質。場發射穿透式電子顯微鏡的優點在於能夠快速變換空間解析度,可以由微米尺度到近原子尺度,因此可以分析的範圍非常廣泛,電子能量損失譜儀則是藉由收集入射電子因穿透樣品時與樣品作用產生的能量損失能譜結合理論模擬計算之後可以得到材料的組成及電子組態。而由電子損失能譜結合二維空間分佈技術可以得到元素及濃度的空間分佈,不過卻無法得到材料特性的二維空間分佈,本篇論文使用快速傅立業內插法、最大熵解卷法以及小波轉換去除雜訊法增進能量損失譜儀的能量解析度以及去除能量損失譜中的雜訊,使得經由改良式連續能譜影像法所擷取的能量損失譜具有定性與定量的特性。
    穿透式電子顯微鏡在拍攝高分辨影像時容易受外界或是記錄系統本身的雜訊所影響而導致影像品質及解析度下降,這現象對於掃瞄穿透式電鏡暗場影像特別明顯。因此,本篇論文討論在穿透式顯微鏡以及掃瞄穿透式電鏡暗場影像雜訊的特性及行為,並提出以小波轉化去除雜訊的方式最有效率而且可以回復掃瞄穿透式電鏡暗場影像的品質與原子序對比。
    最後,結合高分辨電子顯微鏡、電子能量損失譜儀以及光致激發螢光譜儀分析本實驗室所自行合成之不同尺寸的氧化鋅奈米線的性質。藉由致激發螢光譜儀分析不同尺寸的氧化鋅奈米線並結合電子損失能量譜儀分析個別奈米線的能隙證明氧化鋅奈米線的綠光光譜特性主要是由表面效應所主導,此外,配合理論計算(FEFF code)與鋅(Zn) 元素L2,3核損失峰之電子能量損失譜的分析確認氧化鋅奈米線綠光光譜的發光機制主要是由於氧空缺存在於奈米線表面所導致。同時,亦觀察得出當氧化鋅奈米線線徑小於20奈米時開始有輕微的量子侷限效應產生,亦會反映在材料的電漿損失能量上,這行為在材料線徑小於10奈米時更為明顯,證明氧化鋅奈米線的尺度即使大於該材料之激子波爾半徑仍會有量子侷限效應產生。


    Abstract
    In this work, the study is to improve the analysis of the transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) in nanomaterial system. In nanoscale, the property, structure and composition of materials will be changed due to quantum effect and surface effect. Therefore, how to understand and control these three parameters is very important to design and apply the materials in nanotechnology. The advantage of field emission TEM is owns very high spatial resolution such as 1~2Å and can do individual analysis or measurement for each nanomaterails system. Besides, combining the theoretical calculation and electron energy loss spectrum collected the energy loss electrons can reveal the material properties. Although energy filtered TEM (EFTEM) can provide two dimensional information of chemical distribution (composition), it can not give properties information. Therefore, the new electron spectroscopic imaging series technique (ESI), which named advanced ESI technique is develop to improve the energy resolution of EEL-spectra, increasing the sampling of raw data and removes the noise and article by employing three numerical methods as maximum entropy deconvolution (MEM), fast Fourier interpolation and wavelet denoising method. The EEL-spectra which extracted from the newly developed advanced ESI technique is not only provide the properties of materials but also can do the quantification analysis.
    The noise which caused by the environment or recording system (CCD or image plate) is one of the problems in the high resolution image especially for high angle annular dark field image (HAADF) in scanning transmission electron microscopy (STEM) and it will reduce the spatial resolution and image quality. We study the noise behavior in HAADF image and demonstrate wavelet denoising method as the best method because not only reducing the noise contribution in HAADF image but also restorimg the image quality, resolution and Z-contrast ability.
    In the last session of this work, combing the high resolution TEM, EELS and photoluminescence (PL) analysis, the properties of different diameter ZnO nanowires have been investigated. First, the PL-spectra of different ZnO nanowires reveal the green emission will increase while the diameter decreased and the ratio of green/UV emission is almost consisted with the surface-to-volume (S/V) ratio of nanowires. For further analysis, the bandgap measurement from surface and center region of individual nanowires was done by low loss EELS analysis technique. These results indicate that the surface effect will predominate the photoluminesence of ZnO nanowires. The oxygen vacancy is identified as green emission mechanism by comparing with Zn L2,3 core loss EEL-spectrum and theoretical calculation with different defect model by FEFF V8.2 code which based on the real space multiple scattering calculation. The quantum confinement effect which contributed in plasmon loss energy is observed while the diameter of ZnO nanowires small than 20nm and it becomes more obviously in 10nm and smaller. The relationship of the quantum confinement effect and plasmon loss energy is derived by simply quantum mechansim. The correlation of the quantum confinement effect and diameter of ZnO nanowires can be found by fitting with experimental data. The experimental results also reveal the quantum confinement effect can be observed in the weak confinement region.

    目 錄 頁次 目錄…………………………………………………………………….Ⅰ 圖目錄………………………………………………………………….Ⅲ 表目錄……………………………………………………….…………Ⅵ 第一章 研究動機……………………………………………….……….1 第二章 文獻回顧…….…………………….……………………………5 2-1電子顯微鏡之發展…………………………………...……5 2-1-1傳統穿透電子顯微鏡………………………………….5 2-1-2掃瞄穿透式電子顯微鏡……………………….……….8 2-2 電子損失能譜儀之發展…………………………………13 2-2-1 電子損失能譜儀………………….……….…………15 2-2-2 能量過濾電鏡………………….…………….………17 2-3 連續電子能譜影像法…….………..…..………………...18 2-4掃瞄穿透式電鏡與連續能譜影像法之比較……………..22 第三章 實驗儀器與分析方法原理……………………………………29 3-1實驗儀器與advanced連續能譜影像法…………...........29 3-1-1實驗儀器……………..……………………………..29 3-1-2 advanced連續能譜影像法…………..………..……30 3-1-3快速傅立業內插法…………..…………………......32 3-1-4最大熵解卷法…………..………………………..…34 3-2 高分辨影像模擬程式-多層法………..…….……….…37 3-3 雜訊種類與消除方法……………….……….…………38 3-3-1 穿透式電鏡影像雜訊種類與特性…………..….…39 3-3-2 雜訊在影像上的作用方式………………….…..…41 3-3-3 高分辨影像上常用之濾波器………………..….…42 3-3-4 小波轉換與小波濾波…………………....………...43 第四章 advanced連續能譜影像法…………………………………….58 4-1碳元素K損失峰連續能譜影像法……………….……..58 4-2導入數值方法改善連續能譜影像法……………..……..60 4-3類鑽石膜內碳元素能損譜π鍵和σ鍵之半定量………65 4-4碳化矽複合材料之系統破裂機制分析…………………68 第五章 掃瞄穿透式電鏡暗場影像品質回復…………………………86 5-1 HAADF影像內雜訊的行為……..................................…86 5-2利用數值方法回復HAADF影像品質及投影位能….…87 5-3 Z-contrast特性回復…………………………………..….92 第六章 氧化鋅奈米線結構及特性分析………………………..........100 6-1氧化鋅奈米線微結構及發光特性分析.…………..…...100 6-2氧化鋅奈米線吸收能譜特性與缺陷分析……………..103 6-3氧化鋅奈米線量子侷限效應分析……………..………108 第七章 結論…………………………………………………………..126 第八章 未來研究方向…………………………………………….….128 參考文獻………………………………….…………………………....129 圖目錄 圖2.1:掃瞄式穿透電鏡成像示意圖………………………………...…26 圖2.2:ADF-STEM成像示意圖……………………………...………...27 圖2.3:OMEGA filter與Gatan GIF之示意圖…………………....…….28 圖3.1:場發射穿透式電子顯微鏡基本構造圖.……………..…………50 圖3.2:能量過濾成像系統示意圖…………...………..……….……….51 圖3.3:連續能譜影像法之示意圖……………………...…..…….…….52 圖3.4:雜訊頻譜圖………………………………………………………52 圖3.5:二維空間小波轉換示意圖 (a)原始矩陣(b)一階小波轉換後矩陣 (c)三階小波轉換及訊號重組示意圖…………………………………53 圖3.6: (a)Daubechies凌波函數之圖形 (b)多層解析空間分解之示意圖……………….……………..54 圖3.7小波縮減示意圖….……………………………………………...55 圖3.8: (a)未處理的測試訊號 (b)使用快速傅立業轉換重建的訊號 (c)使用小波轉換重建的訊號圖………………………………56 圖4.1:碳元素電子鍵結能階示意圖……………….……....………….74 圖4.2:advanced連續能譜影像法實驗流程圖………………………..74 圖4.3:(a)碳元素K損失峰連續能譜影響法所萃取之能損譜 (b)利用一般快速傅立業內差法將能量記錄增進至0.125eV (c)使用鏡射法消除快速傅立業內差法所產生的超射現象 ….……………………………………………………………..75 圖4.4:(a)使用Wiener filter反卷積法所還原之能損譜 (b)利用最大熵解卷法所重建之能損譜 (c)使用最大熵解卷法所增進的能量解析度…………..……....76 圖4.5:(a)小波轉換去除不同頻率雜訊程度之能損 (b)對應於其程度所去除的雜訊訊號……………………….....77 圖4.6:(a)與(b)分別為非晶質區域連續能譜影像法之能量損失譜與EELS電子損失能譜之比較結果………………………..…....78 圖4.7:利用小波轉換處理奈米級電子束所取得能損譜中的雜訊,(a) 小波轉換去除不同頻率雜訊程度之能量損失譜 (b)對應於其程度所去除的雜訊訊號………………..……………………..79 圖4.8: EELS能量損失譜定量π鍵和σ鍵的流程圖………………..79 圖4.9:(a)非晶質鑽石膜之TEM影像 (b)碳與鉻元素成份分佈圖………………….…………………80 圖4.10:利用連續能譜影像法所求得的非晶質鑽石膜之π鍵含量分佈圖………………………….…………………………………..81 圖4.11:碳化矽複合材料破裂模式示意圖…………………………….82 圖4.12:碳化矽複合材料推出測試(pull-out test)後之SEM影像…….82 圖4.13: 碳化矽複合材料之TEM微結構照片……………………….83 圖4.14:碳化矽複合材料:(a) fiber/PyC界面(b) matrix/PyC界面 之高分辨電鏡影像(c)fiber/PyC/Matrix 界面EELS能損譜………………84 圖4.15 (a) ESI區域之zero-loss image (b) sp2 鍵結含量map (c)破裂機制示意圖 ……………………………………………………85 圖5.1(a)一般高分辨電鏡影像內的雜訊行為(b) HAADF影像內雜訊行為…………………………………………………………….93 圖5.2: HAADF-STEM矽原子高分辨影像…………..……………......94 圖5.3 : 模擬矽原子HAADF影像欠焦量分別為:(a) 590, (b) 611, (c) 630, (d) 650 Å ……………………………………………94 圖5.4:不同雜訊過濾方法的lens transfer function set……………..….95 圖5.5: (a) parametric Wiener filtered (b) BSF filtered (c) wavelet-based denoising 影像………………………………………………..96 圖5.6: (a)原始影像 (b) Wiener filter (c) BSF (d)小波轉換去雜訊後高倍率原子影像及power spectrum……………………….97 圖5.7: (a)考慮雜訊貢獻(b)無雜訊處理 之MEM解卷影像以及STEM multislice 模擬Si[110] HAADF影像傾轉(c) 3o (d) 10o之影像…..….98 圖5.8: SrTiO3 Z-contrast ability回復影像……………..………..……..99 圖6.1:氧化鋅奈米線(a) 40, (b) 20, (c) 10 (d) 5奈米之SEM影像...114 圖6.2: 不同尺度之ZnO奈米線 diameter統計圖…………………..115 圖6.3: 金催化劑及半球模型與成長奈米線之關係圖…………...…115 圖6.4 : ZnO nanowire 之(a) TEM (b)高分辨 影像……….…………116 圖6.5: 不同尺寸之ZnO奈米線室溫PL光譜………..…………….117 圖 6.6: ZnO奈米線表層區域與中心區域 之能隙量測 ………...…117 圖6.7: ZnO奈米線氧元素K edge (a)中心區域(b)表面區域 電子能損譜……………………………………………………118 圖6.8: ZnO奈米線Zn L2,3 不同尺寸表面區域能損譜………...……119 圖6.9:利用FEFF模擬氧化鋅VO以及ZnI兩種缺陷模型(0.636%)之 Zn L2,3吸收光譜…………..………………………….………119 圖6.10:經由缺陷模型計算ZnI以及VO之p及d軌域LDOS………..120 圖6.11:不同尺寸氧化鋅奈米線電漿損失能譜圖…………………...121 圖6.12:氧化鋅奈米線60K低溫之PL光譜圖....................................122 圖6.13:(a) 與氧化鋅奈米線的關係 (b)利用公式6.19與奈米線電漿偏移量的曲線…………….123 圖6.14:利用公式6.21由實驗數據求得斜率(n)……………………...124 圖6.15:實驗數據( )、簡易理論計算(n=2)以及實驗計算結果(n=1.47)的比較圖………………………………………………….…..124 表目錄: 表3-1:200keV下常見元素之能量過濾電鏡 最佳空間解析度……57 表6-1:不同尺寸氧化鋅奈米線與塊材室溫PL光譜量測數據……125 表6-2:不同尺寸氧化鋅奈米線之體表比……………………………125

    參考文獻
    1. O. Scherzer, J. Appl. Phys., 20:20 (1949)
    2. M. Haider, Optik, 99:167 (1995)
    3. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius and K. Urban, Nature, 392:768 (1998)
    4. F. Hosokawa, T. Tomita, M. Naruse, T. Honda, P. Hartel and M. Haider, J. Elec. Microsc., 52:3 (2003)
    5. L. Y. Chang, F. R. Chen, A. I. Kirkland and J. J. kai, J. Elec. Microsc., 52:359 (2003)
    6. W. O. Saxton, Computer Techniques for Image Processing in Electron Microscopy, Academic Press, New York, (1978)
    7. W. K. Hsieh, F. R. Chen, J. J. Kai and A. I. Kirkland, Ultramicrosc., 98:99 (2004)
    8. D. Van Dyck, M. Op de Beeck, in: proceeding of the 12th International Congress for Electron Microscopy, Scattle, 1990, P2
    9. M. von Ardenne, Das elektronenmikroskop. Z. fur. Physik., 78:318 (1938)
    10. A. V. Crewe, J. Wall and L. M. Welter, J. Appl. Phys, 39:5861 (1968).
    11. A. V. Crewe and J. Wall, J. Mol. Biol. 48:375, (1970)
    12. J. M. Cowley, Appl. Phys. Letters, 15:58-59, 1969.
    13. A. V. Crewe and J. Wall, Optik, 30:461 (1970)
    14. A. Howie, J. Microsc., 117:11 (1979)
    15. S. J. Pennycook and D. E. Jesson, Ultramicrosc., 37:14 (1991)
    16. D. E. Jesson and S. J. Pennycook, Proceeding: Mathematical and Physical Sciences, 449:273 (1995)
    17. P. Rez, Ultramicrosc., 96:117 (2003)
    18. P. D. Nellist and S. J. Pennycook, Ultramicrosc., 78:111 (1999)
    19. E. J. Kirkland, R. F. Loane and J. Silcox, Ultramicrosc., 23:77 (1987)
    20. R. F. Loane, E. J. Kirkland and J. Silcox, Acta. Cryst. A., 44:912 (1988)
    21. R. J. Keyse, A. J. Garrat-Reed, P. J. Goodhew and G. W. Lorimer, “Introduction to Scanning Transmission Electron Microscopy”, BIOS Scientific Publisher Limited, (1998)
    22. C. Mory, C. Colliex and J. M. Cowley, Ultramicrosc., 21:171 (1987)
    23. E. J. Kirkland “Advanced Computing in Electron Microscopy”, Plenum Press, New York and London. (1998)
    24. H. S. V. Harrach, Ultramicrosc., 58:1 (1995)
    25. D. A. Muller and J. Silcox, Ultramicrosc., 59:195 (1995)
    26. P. E. Batson, Ultramicrosc., 78:33 (1999)
    27. E. M. James and N. D. Browning, Ultramicrosc, 78:125 (1999).
    28. P. D. Nellist and S. J. Pennycook, J. Microsc., 190:159 (1998)
    29. K. Ishizuka, J. Elec. Microsc., 50:291 (2001)
    30. K. Watanabe, Y. Kotaka, N. Nakanishi, T. Yanazaki, I. Hashimoto and M. Shiojiri, Ultramicrosc., 92:191 (2002)
    31. N. Nakanishi, T. Yamazaki, A. Rečnik, M. Čeh, M. Kawasaki, K. Watanabe and M. Shiojiri, J. Electron. Microsc., 51:383 (2002)
    32. A. J. McGibbon, S. J. Pennycook and D. E. Jesson, J. Microsc., 195:44 (1999)
    33. L. Reimer, “Energy-Filtering Transmission Electron Microscopy”, Springer-Verlag Heidelberg, New York (1995)
    34. G. Ruthemann, Diskrete Engerieverluste schneller Elektronen in Festkorpern. Natureiss. 29:648 (1941)
    35. J. Hiller and R. F. Baker, J. Appl. Phys. 15:663 (1944)
    36. R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, (1996)
    37. A. W. Blackstick, R. D. Birkhoff and M. Slater, Rev. Sci. Instrum. 26:274 (1955)
    38. G. H. Curtis and J. Silcox, Rev. Sci. Intrum. 42:630 (1971)
    39. R. H. Jakobs and J. Geiger, Phys. Stat. sol. (b) 95:549 (1979)
    40. H. Boersch, Optik. 5:436 (1949)
    41. G. Möllenstedt and O. Rang, Z. angew. Phys. 3:187 (1951)
    42. L. Henry and R. Castaing, C.R. Acad. Sci. Paris B255:76 (1962)
    43. R. M. Henkelman and F. P. Ottensmeyer, J. Microsc. 47:109 (1974a)
    44. C. Jeanguillaume, Trebbia P, and C. Colliex, Ultramicroscopy 3: 237 (1978)
    45. O. L. Krivanek, A. J. Gubbens, M. K. Kundmann, and G. C. Carpenter, 51st Ann. Proc. Electron Microsc. Soc. Am. (San Francisco Press, San Francisco) 586 (1993)
    46. H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicorsc., 19:121 (1986)
    47. P. A. Crozier, Ultramicorsc., 58:157 (1995)
    48. J. Bentkey, E. L. Hall and E. A. Kenik, Proc. Microscopy and Microanalysis. 268 (1995)
    49. F. Hofer, W. Grogger, G. Kothleitnrt and P. Warbichler, Ultramicrosc., 67:83 (1997)
    50. J. Mayer, U. Eigenthaler, J. M. Plitzko, and F. Dettenwanger, Micron 5: 361 (1997)
    51. F. Hofer and P. Warbichler, Ultramucrosc., 63:21 (1996)
    52. N. Bonnet, C. Coliex, C. Mory and M. Tence, Scanning Microscopy 2(Suppl.) 351 (1988)
    53. A. Berger, J. Mayer and H. Kohl, Ultramicrosc., 55:101 (1994)
    54. P. A. Crozier and R. F. Egerton, Ultramicrosc., 27:9 (1988)
    55. D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press. New York & London, (1996)
    56. T. Malis, S. Cheng and R. F. Egerton, J. Electron. Microsc. Tech. 8:8471 (1988)
    57. F. Hofer, W. Grogger, and P. Warbichler, Ultramircosc., 59:15 (1995)
    58. W. Jager and J. Mayer, Ultramicrosc., 38:47 (1995)
    59. M. Schenner, M. Nelhiebel and P. Schattschneider, Ultramicrosc., 65:95 (1996)
    60. R. F. Egerton and M. J. Whelab, J. Electron. Spectrosc. 3:232 (1974a)
    61. R. F. Egerton and M. J. Whelab,. Philos. Mag. 30:739 (1974b)
    62. S. D. Beger, D. R. Mckenzie and P. J. Martin, Philos. Mag. Lett. 57:285 (1988)
    63. J. Mayer and J. M. Plitzko, J. Microsc. 183:2 (1996)
    64. J. M. Martin, B. Vacher, L. Ponsonnet and V. Dupuis, Ultramicrosc., 65:229 (1996)
    65. K. Varlot, J. M. Martin, C. Quet and Y. Kihn, Ultramicrosc., 68:123 (1997)
    66. A. Rzzi, J. anal. Chem. 358:15 (1997)
    67. L. Ponsonnet, B. Vacher and J. M. Martin, Thin. Solid. Film., 324:170 (1998)
    68. P. J. Thomas and P. A. Midgley Microsc. Microanal 5 (Suppl. 2: Proceedings) 618 (1999)
    69. P. J. Thomas, P. A. Midgley, and P. Spellward, Inst. Phys Conf. Ser. 161: (EMAG 99) (1999)
    70. F. Hofer, W. Grogger, P. Warbichler and I. Papst, Mikrochim. Acta. 132:273 (2000)
    71. W. Grogger, F. Hofer, P. Warbichler, and G. Kothleitner, Microsc. Microanal. Microstruct. 6: 161 (2000)
    72. P. J. Thomas and P. A. Midgley, Ultramicrosc., 88:179 (2001)
    73. V. J. Keast, A. J. Scott, R. Brydson, D. B. Williams and J. Brulley. J. Microsc. 203:135 (2001)
    74. Shen-Chuan Lo, Ji-Jung Kai, Fu-Rong Chen, Li-Chien Chen, Li Chang, Cheng-Cheng Chiang, Peijun Ding, Barry Chin, Hong Zhang, and Fusen Chen, Journal of electron Microscopy, 50:497 (2002)
    75. P. J. Thomas and P. A. Midgley, Ultramicrosc., 88:187 (2001)
    76. A. Howie, 39th Ann. Proc. Electron Microsc. Soc. Am. Ed. G. W. Bailey, Claitor’s Publishing, Baton Rouge, Louisiana, pp:186 (1981)
    77. D. A. Muller and J. Silcox, Ultramicrosc., 59:195 (1995)
    78. A. J. Bourdillon, N. W. Self and W. M. Stobbs, Phil. Mag. A. 44:1335 (1981b)
    79. K. Singhal and J. Wlach, Proc. IEEE. 1558. (1972)
    80. D. Fraser, IEEE. Trans. Acoust., Speech, Signal Processing. 37(5):665 (1989)
    81. C. R. Gonzalez and E. R. Woods, “Digital Image Processing”, Addison Wesley, (1993)
    82. S. F. Gull and G. J. Daniell, Nature. 272:686 (1978)
    83. N. Agmon, Y. Alhassid and R. D. Levine, J. Comp. Phys., 30:250 (1979)
    84. R. Wilczek and S. Drapatz, Astron. Astrophys., 142:9 (1985)
    85. M. H. F. Overwijk and D. Reefman, Micron. 31:325 (2000)
    86. F. R. Chen, J. J. Kai, L. Chang, J. Y. Wang and W. J. Chen, J. Elec. Microsc. 48(6):827 (1999)
    87. F. R. Chen, H. Ichnose, J. J. Kai and L. Chang, J. Elec. Microsc. 50:529 (2001)
    88. J. M. Cowley and A. F. Moodie, Acta Crystallogr., 10:609 (1957)
    89. 陳厚模, 科儀新知 第九卷 第一期 民國七十六年七月 71頁
    90. J. S. Lim, “Two-dimensional Signal and Image Processing”, Englewood Cliffs, Prentice Hall(1990)
    91. L. D. Marks, Ultramicrosc., 62:43 (1996)
    92. M. L. Sattler and M. A. O’Keefe, Proc. EMSA, 45:104 (1987)
    93. R. Kilaas, J. Microsc., 190:45 (1998).
    94. I. Daubehies, Comm. Pure Appl. Math. 41:909 (1988)
    95. S. Mallat, IEEE. Trans. Pattern. Anal. & Machine Intell., 11:674 (1989)
    96. P. Goupillaud, A. Grossmann and J. Morlet, Geoexploration. 23:85 (1984)
    97. K. Jetter, U. Depczynski, K. Molt and A. Niemoller, Analytica. Chimica. Acta. 420:169 (2000)
    98. I. Daubechies, “Ten Lectures on Wavelets” SIAM, Regional conference series in applied mathematics. (1992)
    99. Y.Y. Tang, L.H. Yang, J. Liu, and H. Ma, “Wavelet Theory and Its Application to Pattern Recognition” Volume 61, World Scientific. (2000)
    100. D. E. Newland, “An introduction to Random vibrations, spectral and wavelet analysis”, Prentice-Hall (1993)
    101. 單維彰 (2000) 凌波初步First concept of wavelets (全華科技)
    102. S. Muto, J. Elec. Microsc. 49(4):525 (2000)
    103. D. Donoho and I. Johnstone, Ideal Spatial Adaptation via wavelet Shrinkage. Technical report, Department of Statistics, Stanford Univ. USA, 1992.
    104. S. G. Nikolov, H. Hutter and M. Grasserbauer, Chem. Int. Lab. Sys. 34:263 (1996)
    105. U. Depczynski, K. Jetter, K. Molt and A. Niemoller, Chem. Int. Lab. Sys. 49:151 (1999)
    106. J. Robertson and E. P. O’Reilly, Phys. Rev. B., 35, p:2946 (1987)
    107. J. Robertson, Surf & Coat Tech. 185-203. (1992)
    108. R. D. Leapman, P. L. Fejes and J. Silcox, Phys. Rev. B 28:2361 (1983)
    109. N. K. Menon and J. Yuan, Ultramicrosc., 74:83 (1998)
    110. A. J. Papworth, C. J. Kiely, A. P. Burden, S. R. P. Silva and G. A. J. Amaratunga, Phys. Rev. B., 62:12628 (2000)
    111. A. C. Ferrari, B. K. Tanner, V. Stolojan, L. M. Brown, S. E. Rodil, B. Kleinsorge and J. Robertson, Phys. Rev. B., 62:11089 (2000)
    112. C. A. Davis, G. A. J. Amaratunga and K. M. Knowles, Phys. Rev. Lett., 80:3280 (1998)
    113. I. Alexandrou, H-J. Scheibe, C. J. Kiely and A. J. Papworth, Phys. Rev. B., 60:10903 (1999)
    114. S. Prochazka, “Special Ceramics 6” Brit. Ceram. Res. Associ. Stoke-on Trent UK, p171 (1975)
    115. 陳建文, 碩士論文“碳化矽/碳化矽 複合材料應用於核融合反應之輻射效應研究”, 清華大學 工程與系統科學系 (2002)
    116. 方柏傑, 碩士論文“應用於核融合之Tyranno-SA纖維/碳化矽複合材料輻射效應研究”, 清華大學 工程與系統科學系 (2002)
    117. A. Hasegawa, A. Kohyama, R. H. Jones, L. L. Sheas, B. Riccardi and P. Fenici, J. nuclear, Mater., 283-287:128 (2000)
    118. S. P. Lee, J. S. Park, Y. Katoh, A. Kohyama, D. H. Kim, J. K. Lee and H. K. Yoon, J. Nuclear, Mater., 307-311:1191 (2002)
    119. W. Yang, A. Kohyama, T. Noda, Y. Katoh, T. Hinoki, H. Araki and J, Yu, J. Nuclear, Mater., 307-311:1088 (2002)
    120. S. M. Dong, G. Chollon, C. L-M. Lahaye, A. Gutte, J. L. Bruneel, M. Couzi, R. Naslain and D. L. Jianf, J. Mater. Sci., 36:2371 (2001)
    121. F. Rebillat, J. Lamon and R. Naslain, J. Am. Ceram. Soc., 81(9):2315 (1998)
    122. S. Dong, Y. Katoh and A. Kohyama, J. Am. Ceram. Soc., 86(1):26 (2003)
    123. Z. W. Pan, Z. R. Dai and Z. L. Wang., Science, 291:1947 (2001)
    124. Y. Wu and P. Yang, J. Am. Chem. Soc., 123:3165 (2002)
    125. 王明山, 碩士論文“氧化鋅奈米線成長控制及發光性質之研究”, 清華大學 工程與系統科學系 (2003)
    126. 郭憲政, 碩士論文“氧化鋅奈米結構之光致激發螢光光譜之研究”, 清華大學 物理學系 (2003)
    127. E. G. Bylander, J. Appl. Phys., 49(3):1188 (1978).
    128. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Appl. Phys. Lett., 68(3):403 (1996).
    129. L. Guo and S. Yang, Chem. Mater. 12:2268 (2000)
    130. B. Lin, Z. Fu and Y. Jia, J. Electrochem. Soc., 148(3):G110 (2001)
    131. P. E. Baston, K. L. Kavanagh, J. M. Woodall and J .Mayer, Phys. Rev. Lett. 57:2729 (1986)
    132. R. J. Elliott, Rhys. Rev. 108:1384 (1957)
    133. N. Peyghambarian, S. W. Kocj and A. Mysyrowicz, “Introduction to semiconduction optics”, Prentice-Hall, Inc (1993)
    134. R. D. Leapman, P. Rez, and D. F. Mayers, J. Chem. Phys., 72:1232 (1980)
    135. R. D. Leapman, L. A. Grunes and P. L. Fejes, Phys. Rev. B., 28:2361 (1982)
    136. http://leonardo.phys.washington.edu/feff/
    137. J. J. Rehr and R. C. Albers, Rev. Mod. Phys., 72(3), 621 (2000)
    138. B. Ravel, J. Synchrotron Rad., 8:314 (2001)
    139. S. T. Pantelides, Phys. Rev. B, 11(6):2391 (1975)
    140. A. I. Nesvizhskii and J. J. Rehr, J. Synchroton Rad., 6:315 (1999)
    141. J. Luitz, M. Maier, C. Hébert, P. Schattschmeider, P. Blaha, K. Schwarz and B. Jouffrey, Eur. Phys. J. B., 21:363 (2001)
    142. T. Mizoguchi, M. Yoshiya, J. Li, F. Oba, I. Tanaka and H. Adachi, Ultramicrosc., 86:363 (2001)
    143. F. Kohan, G. Ceder and D. Morgan, Phys. Rev. B., 61(22):15019 (2000).
    144. F. Oba, S. R. Nishitani, S. Isotani, H. Adachi and I. Tanaka, J. Appl. Phys., 90(2):824 (2001).
    145. http://www.nims.go.jp/eng/
    146. A. D. Yoffe, Adv. In Phys., 50(1):1 (2001)
    147. Y. Kayanuma, Phys. Rev. B, 38:9797 (1985)
    148. D. Pines, “Elementary Excitations in Solids”, Benjamin, New York (1963)
    149. M. Mitome, Y. Yamazaki, H. Takagi and T. Nakagirl, J. Appl. Phys., 72(2):812 (1992)
    150. P. E. Baston and J. R. Heath, Phys. Rev. Lett., 71(6):911 (1993)
    151. R. Tsu, D. Babic, L. Ioriati Jr., J. Appl. Phys., 82(3):1327 (1997)
    152. P. N. H. Nakashima, T. Tsuzuki and A. W. S. Johnson, J. Appl. Phys., 85(3):1556 (1999)
    153. Y. K. Chang, H. H. Hsieh, W. F. Pong, M. H. Tsai, F. Z. Chien, P. K. Tseng, L. C. Chen, T. Y. Wang, K. H. Chen, D. M. Bhusari, J. R. Yang and S. T. Lin, Phys. Rev. Lett., 82:5377 (1999)
    154. N-M. Park, C-J. Choi, T-Y, Seong and S-J. Park, Phys. Rev. Lett., 86:1355 (2001)
    155. J. Hasen, L. N. Pfeiffer, A. Pinczuk, S. He, K. W. West and B. S. Dennis, Nature, 390(6):54 (1997)
    156. M. S. Sander, R. Gronsky, Y. M. Lin and M. S. Dresselhaus, J. Appl. Phys., 89(5):2733 (2001)
    157. W. S. Baer, Phys. Rev., 154(3):785 (1966)
    158. J. Lagois, Phys. Rev. B, 23:5511 (1981)
    159. L. E. Brus, J. Chem. Phys., 80(9):4403 (1984)
    160. H. Yu, J. Li, R. A. Loomis, L. W. Wang and W. Buhro, Nature materials, 2:517 (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE