簡易檢索 / 詳目顯示

研究生: 陳彥男
Chen, Yeng-Nan
論文名稱: 利用氟化學及Julia-Kociensky烯烴化反應建構alpha-GalCer分子庫
Construction of alpha-GalCer Library via Fluorous Chemistry and Julia-Kociensky Olefination
指導教授: 林俊成
Lin, Chun-Cheng
口試委員: 汪炳鈞
侯敦仁
蒙國光
俞鐘山
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 390
中文關鍵詞: 半乳糖苷基神經醯胺自然殺手細胞醣脂質Julia-Kociensky 烯烴化反應氟標的物
外文關鍵詞: alpha-GalCer (KRN7000), NKT cell, glycolipid, Julia-Kociensky olefination, Fluorous tag
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • alpha-半乳糖神經酰胺(alpha-神經酰胺,alpha-GalCer)是已知可以與樹突狀細胞上的CD1d受體進行結合進而活化自然殺手 T細胞,之後促使其分泌T輔助細胞 1(Th1細胞)和Th2細胞激素,分別具有抗感染活性和預防自身免疫性疾病的作用。 alpha-神經酰胺促使這兩種細胞因子的分泌並不具有選擇性,且Th1和Th2細胞因子釋放出的細胞激素會互相抑制使其alpha-神經酰胺促的效力是有所侷限。為了能專一性的刺激免疫反應專一性的釋放出Th1和Th2細胞激素,因此有許多□-神經酰胺衍生物經由不同的策略被合成出來,但一直以來都沒有有效的策略可以做為構造□-神經酰胺分子庫的策略,並藉此快速篩選出有活性的化合物。在此我們提供了一個有效的方法來建構□-神經酰胺之類似物,此方法經由Julia-Kociensky烯烴化反應來引入各種不同的脂質化合物及耦合反應連接各種脂肪酸並藉著可重複使用的氟標的物(Fluorous tag)快速純化分離產物。 引入可回收再利用的氟標的物作為純化的策略可以減少有機溶劑的使用(在氟矽膠管柱層析的過程以混合的甲醇及水分離產物)是較為環保的合成策略符合綠色化學的概念。以此合成策略可以建構出核心化合物77,由起始物D-來蘇糖開始共15步產率4.9%並成功地得到65個□-神經酰胺似物,包含其中KRN7000(98a)。之後會進一步進行這些化合物的活性測試。


    Alpha-galactosyl ceramide (alpha-GalCer) has been known to bind to the CD1d receptor on dendritic cells and activate invariant natural killer T (iNKT) cells, which subsequently secrete T-helper-cell 1 (Th1) and Th2 cytokines, which correlate with anti-infection activity and the prevention of autoimmune diseases, respectively. alpha-GalCer elicits the secretion of these two cytokines nonselectively, and thus, its effectiveness is limited by the opposing effects of the Th1 and Th2 cytokines. Therefore there were many alpha-GalCer derivatives syntheized by different strategy for specific releasing Th1 or Th2 cytokines by immune respone, but ultimately no effective approach could construct □-GalCer library for rapid screening. Herein we provided a effectively method to construction of the □-GalCer analogues via Julia-Kociensky olefination induced various lipid chains and coupling reaction connected with various fatty acids and it can be purified effectively by reusable Ftag. This strategy reduced the waste of organic solvent (elute with methanol/water during FSPE) in accordance the concept of green chemistry. The core building block 77 was obtained in 4.9% yield from commerically available D-lyxose and we successfully obtained 65 alpha-GalCer analogues contained 98a (KRN7000) by using this approach. The activity of these compounds will be carried out in the future.

    第一章、 前言 1 1-1 緒論 1 1-2 醣脂質 3 1-3 NKT細胞 4 1-4 抗原呈現細胞 9 1-5 細胞激素的釋出途徑及免疫機制的調節 13 1-6 □□GalCer的發現及其用途 17 1-7 □□GalCer的結構分析及研究 19 1-8 建立□□GalCer的方法 26 1-9 實驗室在醣脂質方面的相關研究 30 1-10 Julia-Kociensky烯烴化反應 33 1-11 固相載體-氟化學的應用(fluorous chemistry) 35 1-11-1 氟分離技術(fluorous separation technology) 38 1-11-2 F-SPE(Fluorous Solid-Phase Extraction) 39 1-11-3 F-LLE(Fluorous Liquid-Liquid Extraction) 41 1-11-4 氟化學在生物分子上的應用 42 1-12 研究動機及期望 45 第二章、結果與討論 47 2-1 合成策略之探討 47 2-2 醣受體-植物鞘胺醇之建構 48 2-3 醣予體-半乳糖之建構 66 2-4 氟標的物之選擇 76 2-4-1 醣體與氟標的物連接之測試 78 2-4-2 氟標的物核心化合物之建構 86 2-4-3 □□GalCer分子庫之建立 89 第三章、結論 97 第四章、實驗部分 98 參考文獻 171

    1. Fujio, M.; Wu, D.; Garcia-Navarro, R.; Ho, D. D.; Tsuji, M.; Wong, C. H., Structure-based discovery of glycolipids for CD1d-mediated NKT cell activation: tuning the adjuvant versus immunosuppression activity. J. Am. Chem. Soc. 2006, 128, 9022.
    2. (a) Koch, M.; Stronge, V. S.; Shepherd, D.; Gadola, S. D.; Mathew, B.; Ritter, G.; Fersht, A. R.; Besra, G. S.; Schmidt, R. R.; Jones, E. Y.; Cerundolo, V., The crystal structure of human CD1d with and without alpha-galactosylceramide. Nat. Immunol. 2005, 6, 819; (b) van der Vliet, H. J.; Molling, J. W.; von Blomberg, B. M.; Nishi, N.; Kolgen, W.; van den Eertwegh, A. J.; Pinedo, H. M.; Giaccone, G.; Scheper, R. J., The immunoregulatory role of CD1d-restricted natural killer T cells in disease. Clin. Immunol. 2004, 112, 8; (c) Borg, N. A.; Wun, K. S.; Kjer-Nielsen, L.; Wilce, M. C.; Pellicci, D. G.; Koh, R.; Besra, G. S.; Bharadwaj, M.; Godfrey, D. I.; McCluskey, J.; Rossjohn, J., CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 2007, 448, 44; (d) Janeway, C., Immunobiology : the immune system in health and disease. 6th ed.; Garland Science: New York, 2005; p xxiii; (e) Brigl, M.; Brenner, M. B., CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 2004, 22, 817.
    3. Hakomori, S.; Zhang, Y., Glycosphingolipid antigens and cancer therapy. Chem. Biol. 1997, 4, 97.
    4. (a) Bhat, S.; Spitalnik, S. L.; Gonzalez-Scarano, F.; Silberberg, D. H., Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120. Proc. Natl. Acad. Sci. 1991, 88, 7131; (b) Karlsson, K. A., Microbial recognition of target-cell glycoconjugates. Curr. Opin. Struct. Biol. 1995, 5, 622; (c) Yu, K. O.; Porcelli, S. A., The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immunol. Lett. 2005, 100, 42.
    5. Morita, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa, E.; Yamaji, K.; Koezuka, Y.; Kobayashi, E.; Fukushima, H., Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J. Med. Chem. 1995, 38, 2176.
    6. Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.; Kaneko, Y.; Motoki, K.; Ueno, H.; Nakagawa, R.; Sato, H.; Kondo, E.; Koseki, H.; Taniguchi, M., CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997, 278, 1626.
    7. Paulick, M. G.; Bertozzi, C. R., The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 2008, 47, 6991.
    8. Bartke, N.; Hannun, Y. A., Bioactive sphingolipids: metabolism and function. J. Lipid. Res. 2009, 50 , S91.
    9. Hannun, Y. A.; Obeid, L. M., Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 2008, 9, 139.
    10. Goldsby, R. A.; Kindt, T. J.; Osborne, B. A.; Kuby, J., Kuby immunology. 4th ed.; W.H. Freeman: New York, 2000; p xxv.
    11. (a) Sykes, M., Unusual T cell populations in adult murine bone marrow. Prevalence of CD3+CD4-CD8- and alpha beta TCR+NK1.1+ cells. J. Immunol. 1990, 145, 3209; (b) Levitsky, H. I.; Golumbek, P. T.; Pardoll, D. M., The fate of CD4-8- T cell receptor-alpha beta+ thymocytes. J. Immunol. 1991, 146, 1113.
    12. Van Kaer, L., alpha-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat. Rev. Immunol. 2005, 5, 31.
    13. Lantz, O.; Bendelac, A., An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J. Exp. Med. 1994, 180, 1097.
    14. Naumov, Y. N.; Bahjat, K. S.; Gausling, R.; Abraham, R.; Exley, M. A.; Koezuka, Y.; Balk, S. B.; Strominger, J. L.; Clare-Salzer, M.; Wilson, S. B., Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc. Natl. Acad. Sci. 2001, 98, 13838.
    15. (a) Bendelac, A.; Rivera, M. N.; Park, S. H.; Roark, J. H., Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 1997, 15, 535; (b) Godfrey, D. I.; MacDonald, H. R.; Kronenberg, M.; Smyth, M. J.; Van Kaer, L., NKT cells: what's in a name? Nat. Rev. Immunol. 2004, 4, 231.
    16. Porcelli, S. A., The CD1 family: a third lineage of antigen-presenting molecules. Adv. Immunol. 1995, 59, 1.
    17. Zeng, Z.; Castano, A. R.; Segelke, B. W.; Stura, E. A.; Peterson, P. A.; Wilson, I. A., Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 1997, 277, 339.
    18. (a) Hayakawa, Y.; Takeda, K.; Yagita, H.; Kakuta, S.; Iwakura, Y.; Van Kaer, L.; Saiki, I.; Okumura, K., Critical contribution of IFN-gamma and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of alpha-galactosylceramide. Eur. J. Immunol. 2001, 31, 1720; (b) Smyth, M. J.; Crowe, N. Y.; Pellicci, D. G.; Kyparissoudis, K.; Kelly, J. M.; Takeda, K.; Yagita, H.; Godfrey, D. I., Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 2002, 99, 1259.
    19. Hayakawa, Y.; Godfrey, D. I.; Smyth, M. J., Alpha-galactosylceramide: potential immunomodulatory activity and future application. Curr. Med. Chem. 2004, 11, 241.
    20. Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y., Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 1994, 50, 2771.
    21. Miyamoto, K.; Miyake, S.; Yamamura, T., A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001, 413, 531.
    22. Zhang, W.; Xia, C.; Nadas, J.; Chen, W.; Gu, L.; Wang, P. G., Introduction of aromatic group on 4'-OH of alpha-GalCer manipulated NKT cell cytokine production. Bioorg. Med. Chem. 2011, 19, 2767.
    23. (a) Yoshiga, Y.; Goto, D.; Segawa, S.; Horikoshi, M.; Hayashi, T.; Matsumoto, I.; Ito, S.; Taniguchi, M.; Sumida, T., Activation of natural killer T cells by alpha-carba-GalCer (RCAI-56), a novel synthetic glycolipid ligand, suppresses murine collagen-induced arthritis. Clin. Exp. Immunol. 2011, 164, 236; (b) Tashiro, T.; Sekine-Kondo, E.; Shigeura, T.; Nakagawa, R.; Inoue, S.; Omori-Miyake, M.; Chiba, T.; Hongo, N.; Fujii, S.; Shimizu, K.; Yoshiga, Y.; Sumida, T.; Mori, K.; Watarai, H.; Taniguchi, M., Induction of Th1-biased cytokine production by alpha-carba-GalCer, a neoglycolipid ligand for NKT cells. Int. Immunol. 2010, 22, 319.
    24. (a) Motoki, K.; Morita, M.; Kobayashi, E.; Uchida, T.; Akimoto, K.; Fukushima, H.; Koezuka, Y., Immunostimulatory and antitumor activities of monoglycosylceramides having various sugar moieties. Biol. Pharm. Bull. 1995, 18, 1487; (b) Uchimura, A.; Shimizu, T.; Nakajima, M.; Ueno, H.; Motoki, K.; Fukushima, H.; Natori, T.; Koezuka, Y., Immunostimulatory activities of mono- or diglycosylated alpha-galactosylceramides. Bioorg. Med. Chem. 1997, 5, 1447; (c) Uchimura, A.; Shimizu, T.; Morita, M.; Ueno, H.; Motoki, K.; Fukushima, H.; Natori, T.; Koezuka, Y., Immunostimulatory activities of monoglycosylated alpha-D-pyranosylceramides. Bioorg. Med. Chem. 1997, 5, 2245; (d) Zhou, X. T.; Forestier, C.; Goff, R. D.; Li, C.; Teyton, L.; Bendelac, A.; Savage, P. B., Synthesis and NKT cell stimulating properties of fluorophore- and biotin-appended 6"-amino-6"-deoxy-galactosylceramides. Org. Lett. 2002, 4, 1267.
    25. Prigozy, T. I.; Naidenko, O.; Qasba, P.; Elewaut, D.; Brossay, L.; Khurana, A.; Natori, T.; Koezuka, Y.; Kulkarni, A.; Kronenberg, M., Glycolipid antigen processing for presentation by CD1d molecules. Science 2001, 291, 664.
    26. Sakai, T.; Naidenko, O. V.; Iijima, H.; Kronenberg, M.; Koezuka, Y., Syntheses of biotinylated alpha-galactosylceramides and their effects on the immune system and CD1 molecules. J. Med. Chem. 1999, 42, 1836.
    27. (a) Motoki, K.; Kobayashi, E.; Uchida, T.; Fukushima, H.; Koezuka, Y., Antitumor Activities of Alpha-Monogalactosylceramides, Beta-Monogalactosylceramides and 4 Diastereomers of an Alpha-Galactosylceramide. Bioorganic & Medicinal Chemistry Letters 1995, 5, 705; (b) Park, J.-J.; Lee, J. H.; Seo, K.-C.; Bricard, G.; Venkataswamy, M. M.; Porcelli, S. A.; Chung, S.-K., Syntheses and biological activities of KRN7000 analogues having aromatic residues in the acyl and backbone chains with varying stereochemistry. Bioorg. Med. Chem. Lett. 2010, 20, 814; (c) Sidobre, S.; Hammond, K. J. L.; Benazet-Sidobre, L.; Maltsev, S. D.; Richardson, S. K.; Ndonye, R. M.; Howell, A. R.; Sakai, T.; Besra, G. S.; Porcelli, S. A.; Kronenberg, M., The T cell antigen receptor expressed by V alpha 14i NKT cells has a unique mode of glycosphingolipid antigen recogniton. P. Natl. Acad. Sci. 2004, 101, 12254.
    28. Goff, R. D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C., 3rd; Teyton, L.; Bendelac, A.; Savage, P. B., Effects of lipid chain lengths in alpha-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc. 2004, 126, 13602.
    29. Oki, S.; Chiba, A.; Yamamura, T.; Miyake, S., The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest. 2004, 113, 1631.
    30. Chang, Y.-J.; Huang, J.-R.; Tsai, Y.-C.; Hung, J.-T.; Wu, D.; Fujio, M.; Wong, C.-H.; Yu, A. L., Potent immune-modulating and anticancer effects of NKT cell stimulatory glycolipids. Proc. Natl. Acad. Sci. 2007, 104, 10299.
    31. Lee, Y. S.; Lee, K. A.; Lee, J. Y.; Kang, M. H.; Song, Y. C.; Baek, D. J.; Kim, S.; Kang, C. Y., An alpha-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine. Vaccine 2011, 29, 417.
    32. Jervis, P. J.; Veerapen, N.; Bricard, G.; Cox, L. R.; Porcelli, S. A.; Besra, G. S., Synthesis and biological activity of alpha-glucosyl C24:0 and C20:2 ceramides. Bioorg. Med. Chem. Lett. 2010, 20, 3475.
    33. (a) Dere, R. T.; Zhu, X., The first synthesis of a thioglycoside analogue of the immunostimulant KRN7000. Org. Lett. 2008, 10, 4641; (b) Blauvelt, M. L.; Khalili, M.; Jaung, W.; Paulsen, J.; Anderson, A. C.; Brian Wilson, S.; Howell, A. R., Alpha-S-GalCer: synthesis and evaluation for iNKT cell stimulation. Bioorg. Med. Chem. Lett. 2008, 18, 6374; (c) Hogan, A. E.; O'Reilly, V.; Dunne, M. R.; Dere, R. T.; Zeng, S. G.; O'Brien, C.; Amu, S.; Fallon, P. G.; Exley, M. A.; O'Farrelly, C.; Zhu, X.; Doherty, D. G., Activation of human invariant natural killer T cells with a thioglycoside analogue of alpha-galactosylceramide. Clin. Immunol. 2011.
    34. Fujii, S.; Shimizu, K.; Hemmi, H.; Fukui, M.; Bonito, A. J.; Chen, G.; Franck, R. W.; Tsuji, M.; Steinman, R. M., Glycolipid alpha-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc. Natl. Acad. Sci. 2006, 103, 11252.
    35. (a) Azuma, H.; Tamagaki, S.; Ogino, K., Stereospecific total syntheses of sphingosine and its analogues from L-serine. J. Org. Chem. 2000, 65, 3538; (b) Takikawa, H.; Muto, S.-e.; Mori, K., Diastereoselective epoxidation of the double bond at C-4 of sphingosines to provide phytosphingosine relatives such as [alpha]-galactosylceramide KRN7000. Tetrahedron 1998, 54, 3141; (c) Imashiro, R.; Sakurai, O.; Yamashita, T.; Horikawa, H., A short and efficient synthesis of phytosphingosines using asymmetric dihydroxylation. Tetrahedron 1998, 54, 10657; (d) Yoda, H.; Oguchi, T.; Takabe, K., An expeditious and practical synthetic process for phytosphingosine and tetrahydroxy-LCB from D-glutamic acid. Tetrahedron: Asymmetry 1996, 7, 2113; (e) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P., Stereochemistry associated with the addition of 2-(trimethylsilyl)thiazole to differentially protected .alpha.-amino aldehydes. Applications toward the synthesis of amino sugars and sphingosines. J. Org. Chem. 1990, 55, 1439.
    36. (a) Plettenburg, O.; Bodmer-Narkevitch, V.; Wong, C. H., Synthesis of alpha-galactosyl ceramide, a potent immunostimulatory agent. J. Org. Chem. 2002, 67, 4559; (b) Luo, S.-Y.; Thopate, S. R.; Hsu, C.-Y.; Hung, S.-C., Synthesis of d-ribo-C18-phytosphingosine from d-glucosamine via the d-allosamine derivatives as key intermediates. Tetrahedron Letters 2002, 43, 4889; (c) Graziani, A.; Passacantilli, P.; Piancatelli*, G.; Tani, S., 2-Deoxy-disaccharide approach to natural and unnatural glycosphingolipids synthesis. Tetrahedron: Asymmetry 2000, 11, 3921; (d) Murakami, T.; Taguchi, K., Stereocontrolled synthesis of novel phytosphingosine-type glucosaminocerebrosides. Tetrahedron 1999, 55, 989; (e) Matsumoto, K.; Ebata, T.; Matsushita, H., Novel synthesis of phytosphingosine from levoglucosenone. Carbohydr. Res. 1995, 279, 93.
    37. (a) Nakamura, T.; Shiozaki, M., Stereoselective synthesis of -erythro-sphingosine and -lyxo-phytosphingosine. Tetrahedron 2001, 57, 9087; (b) He, L.; Byun, H. S.; Bittman, R., A stereocontrolled, efficient synthetic route to bioactive sphingolipids: synthesis of phytosphingosine and phytoceramides from unsaturated ester precursors via cyclic sulfate intermediates. J. Org. Chem. 2000, 65, 7618; (c) Martin, C.; Prunck, W.; Bortolussi, M.; Bloch, R., Enantioselective□synthesis□of□lyxo-(2R,3R,4R)-C18-phytosphingosine using double stereodifferentiation. Tetrahedron: Asymmetry 2000, 11, 1585.
    38. Ndonye, R. M.; Izmirian, D. P.; Dunn, M. F.; Yu, K. O.; Porcelli, S. A.; Khurana, A.; Kronenberg, M.; Richardson, S. K.; Howell, A. R., Synthesis and evaluation of sphinganine analogues of KRN7000 and OCH. J. Org. Chem. 2005, 70, 10260.
    39. Figueroa-Perez, S.; Schmidt, R. R., Total synthesis of alpha-galactosyl cerebroside. Carbohydr. Res. 2000, 328, 95.
    40. Chang, C. W.; Chen, Y. N.; Adak, A. K.; Lin, K. H.; Tzou, D. L. M.; Lin, C. C., Synthesis of phytosphingosine using olefin cross-metathesis: a convenient access to chain-modified phytosphingosines from D-lyxose. Tetrahedron 2007, 63, 4310.
    41. Chiu, H. Y.; Tzou, D. L.; Patkar, L. N.; Lin, C. C., A facile synthesis of phytosphingosine from diisopropylidene-D-mannofuranose. J. Org. Chem. 2003, 68, 5788.
    42. Lin, C. C.; Fan, G. T.; Fang, J. M., A concise route to phytosphingosine from lyxose. Tetrahedron Letters 2003, 44, 5281.
    43. Fan, G. T.; Pan, Y. S.; Lu, K. C.; Cheng, Y. P.; Lin, W. C.; Lin, S.; Lin, C. H.; Wong, C. H.; Fang, J. M.; Lin, C. C., Synthesis of alpha-galactosyl ceramide and the related glycolipids for evaluation of their activities on mouse splenocytes. Tetrahedron 2005, 61, 1855.
    44. Hung, L. C.; Lin, C. C.; Hung, S. K.; Wu, B. C.; Jan, M. D.; Liou, S. H.; Fu, S. L., A synthetic analog of alpha-galactosylceramide induces macrophage activation via the TLR4-signaling pathways. Biochem. Pharmacol. 2007, 73, 1957.
    45. Huang, L. D.; Lin, H. J.; Huang, P. H.; Hsiao, W. C.; Reddy, L. V.; Fu, S. L.; Lin, C. C., Synthesis of serine-based glycolipids as potential TLR4 activators. Org. Biomol. Chem. 2011, 9, 2492.
    46. (a) Medzhitov, R.; Preston-Hurlburt, P.; Janeway, C. A., Jr., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997, 388, 394; (b) Takeda, K.; Kaisho, T.; Akira, S., Toll-like receptors. Annu. Rev. Immunol. 2003, 21, 335; (c) Akira, S.; Uematsu, S.; Takeuchi, O., Pathogen recognition and innate immunity. Cell 2006, 124, 783.
    47. (a) Kocienski, P. J.; Bell, A.; Blakemore, P. R., 1-tert-Butyl-1H-tetrazol-5-yl Sulfones in the Modified Julia Olefination. Synlett. 2000, 365; (b) Julia, M.; Paris, J. M., Syntheses Using Sulfones .5. Method for General Synthesis of Doubles. Tetrahedron Letters 1973, 4833; (c) Rong, F., Julia-Lythgoe olefination. Name Reactions for Homologations 2009, 447; (d) Pospisil, J.; Pospisil, T.; Marko, I. E., Sulfoxides in Julia-Lythgoe Olefination: Efficient and Stereoselective Preparation of Di-, Tri-, and Tetrasubstituted Olefins. Org. Lett. 2005, 7, 2373; (e) Satoh, T.; Hanaki, N.; Yamada, N.; Asano, T., A Sulfoxide Version of the Julia-Lythgoe Olefination: A New Method for the Synthesis of Olefins from Carbonyl Compounds and Sulfoxides with Carbon-Carbon Coupling. Tetrahedron 2000, 56, 6223; (f) Keck, G. E.; Savin, K. A.; Weglarz, M. A., Use of Samarium Diiodide as an Alternative to Sodium/Mercury Amalgam in the Julia-Lythgoe Olefination. J. Org. Chem. 1995, 60, 3194.
    48. Bonora, G. M.; Scremin, C. L.; Colonna, F. P.; Garbesi, A., HELP (high efficiency liquid phase) new oligonucleotide synthesis on soluble polymeric support. Nucleic Acids Res. 1990, 18, 3155.
    49. Gladysz, J. A., Curran, D. P., Horvath, I. T., Eds., Handbook of fluorous chemistry. Wiley-VCH: Weinheim 2004.
    50. Horvath, I. T.; Rabai, J., Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science 1994, 266, 72.
    51. (a) Curran, D. P.; Hadida, S.; He, M., Thermal allylations of aldehydes with a fluorous allylstannane. Separation of organic and fluorous products by solid phase extraction with fluorous reverse phase silica gel. J. Org. Chem. 1997, 62, 6714; (b) Luo, Z.; Williams, J.; Read, R. W.; Curran, D. P., Fluorous Boc ((F)Boc) carbamates: new amine protecting groups for use in fluorous synthesis. J. Org. Chem. 2001, 66, 4261; (c) Zhang, W.; Lu, Y.; Chen, C. H.; Curran, D. P.; Geib, S., Fluorous Synthesis of Hydantoin-, Piperazinedione-, and Benzodiazepinedione-Fused Tricyclic and Tetracyclic Ring Systems. Eur. J. Org. Chem. 2006, 2055; (d) Dakas, P. Y.; Barluenga, S.; Totzke, F.; Zirrgiebel, U.; Winssinger, N., Modular synthesis of radicicol A and related resorcylic acid lactones, potent kinase inhibitors. Angew. Chem. Int. Ed. 2007, 46, 6899.
    52. (a) Luo, Z.; Zhang, Q.; Oderaotoshi, Y.; Curran, D. P., Fluorous mixture synthesis: a fluorous-tagging strategy for the synthesis and separation of mixtures of organic compounds. Science 2001, 291, 1766; (b) Zhang, Q.; Rivkin, A.; Curran, D. P., Quasiracemic synthesis: concepts and implementation with a fluorous tagging strategy to make both enantiomers of pyridovericin and mappicine. J. Am. Chem. Soc. 2002, 124, 5774; (c) Curran, D. P.; Zhang, Q.; Richard, C.; Lu, H.; Gudipati, V.; Wilcox, C. S., Total synthesis of a 28-member stereoisomer library of murisolins. J. Am. Chem. Soc. 2006, 128, 9561; (d) Curran, D. P.; Moura-Letts, G.; Pohlman, M., Solution-phase mixture synthesis with fluorous tagging en route: total synthesis of an eight-member stereoisomer library of passifloricins. Angew. Chem. Int. Ed. 2006, 45, 2423.
    53. Montanari, V.; Kumar, K., Just add water: A new fluorous capping reagent for facile purification of peptides synthesized on the solid phase. J. Am. Chem. Soc. 2004, 126, 9528.
    54. (a) Liu, L.; Pohl, N. L., A fluorous phosphate protecting group with applications to carbohydrate synthesis. Org. Lett. 2011, 13, 1824; (b) Agoston, K.; Kroger, L.; Dekany, G.; Thiem, J., Solid-phase random glycosylation. J. Comb. Chem. 2009, 11, 813; (c) Zhang, W., Fluorous tagging strategy for solution-phase synthesis of small molecules, peptides and oligosaccharides. Curr. Opin. Drug Discov. Devel. 2004, 7, 784; (d) Tojino, M.; Mizuno, M., Towards oligosaccharide library synthesis by fluorous mixture method. Tetrahedron Letters 2008, 49, 5920; (e) Carrel, F. R.; Seeberger, P. H., Cap-and-tag solid phase oligosaccharide synthesis. J. Org. Chem. 2008, 73, 2058; (f) Kojima, M.; Nakamura, Y.; Nakamura, A.; Takeuchi, S., Total synthesis of cucurbitoside A using a novel fluorous protecting group. Tetrahedron Letters 2009, 50, 939; (g) Zhang, F.; Zhang, W.; Zhang, Y.; Curran, D. P.; Liu, G., Synthesis and applications of a light-fluorous glycosyl donor. J. Org. Chem. 2009, 74, 2594; (h) Miura, T.; Goto, K.; Waragai, H.; Matsumoto, H.; Hirose, Y.; Ohmae, M.; Ishida, H.; Satoh, A.; Inazu, T., Rapid oligosaccharide synthesis using a fluorous protective group. J. Org. Chem. 2004, 69, 5348; (i) Carrel, F. R.; Geyer, K.; Codee, J. D.; Seeberger, P. H., Oligosaccharide synthesis in microreactors. Org. Lett. 2007, 9, 2285.
    55. Mizuno, M.; Goto, K.; Miura, T., Fluorous glycopeptide synthesis without protection of sugar hydroxy groups. Chem. Lett. 2005, 34, 426.
    56. Pearson, W. H.; Berry, D. A.; Stoy, P.; Jung, K. Y.; Sercel, A. D., Fluorous affinity purification of oligonucleotides. J. Org. Chem. 2005, 70, 7114.
    57. Gladysz, J. A.; Curran, D. P., Introduction - Fluorous chemistry: from biphasic catalysis to a parallel chemical universe and beyond. Tetrahedron 2002, 58, 3823.
    58. Jaipuri, F. A.; Pohl, N. L., Toward solution-phase automated iterative synthesis: fluorous-tag assisted solution-phase synthesis of linear and branched mannose oligomers. Org. Biomol. Chem. 2008, 6, 2686.
    59. Curran, D. P.; Luo, Z. Y., Fluorous synthesis with fewer fluorines (light fluorous synthesis): separation of tagged from untagged products by solid-phase extraction with fluorous reverse-phase silica gel. J. Am. Chem. Soc. 1999, 121, 9069.
    60. Matsugi, M.; Curran, D. P., Reverse fluorous solid-phase extraction: a new technique for rapid separation of fluorous compounds. Org. Lett. 2004, 6, 2717.
    61. (a) Yu, M. S.; Curran, D. P.; Nagashima, T., Increasing fluorous partition coefficients by solvent tuning. Org. Lett. 2005, 7, 3677; (b) Chu, Q.; Yu, M. S.; Curran, D. P., New fluorous/organic biphasic systems achieved by solvent tuning. Tetrahedron 2007, 63, 9890.
    62. Curran, D. P., Fluorous Chemistry in Pittsburgh: 1996-2008. J. Fluor. Chem. 2008, 129, 898.
    63. (a) Wang, L.; Yi, W. B.; Cai, C., Fluorous silica gel-supported perfluoro-tagged palladium nanoparticles: an efficient and reusable catalyst for direct C-2 arylation of indoles. Chem. Commun. 2011, 47, 806; (b) Chu, Q.; Zhang, W.; Curran, D. P., A recyclable fluorous organocatalyst for Diels-Alder reactions. Tetrahedron Lett. 2006, 47, 9287; (c) Matsugi, M.; Curran, D. P., Synthesis, reaction, and recycle of light fluorous Grubbs-Hoveyda catalysts for alkene metathesis. J. Org. Chem. 2005, 70, 1636.
    64. (a) Fukui, Y.; Bruckner, A. M.; Shin, Y.; Balachandran, R.; Day, B. W.; Curran, D. P., Fluorous mixture synthesis of (-)-dictyostatin and three stereoisomers. Org. Lett. 2006, 8, 301; (b) Sui, B.; Yeh, E. A.; Curran, D. P., Assignment of the structure of petrocortyne A by mixture syntheses of four candidate stereoisomers. J. Org. Chem. 2010, 75, 2942.
    65. Pohl, N. L., Fluorous tags catching on microarrays. Angew. Chem. Int. Ed. 2008, 47, 3868.
    66. (a) Todoroki, K.; Yoshida, H.; Hayama, T.; Itoyama, M.; Nohta, H.; Yamaguchi, M., Highly sensitive and selective derivatization-LC method for biomolecules based on fluorescence interactions and fluorous separations. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1325; (b) Qian, J.; Cole, R. B.; Cai, Y., Synthesis and characterization of a 'fluorous' (fluorinated alkyl) affinity reagent that labels primary amine groups in proteins/peptides. J. Mass. Spectrom. 2011, 46, 1; (c) Manzoni, L.; Castelli, R., Froc: a new fluorous protective group for peptide and oligosaccharide synthesis. Org. Lett. 2006, 8, 955.
    67. Ko, K. S.; Jaipuri, F. A.; Pohl, N. L., Fluorous-based carbohydrate microarrays. J. Am. Chem. Soc. 2005, 127, 13162.
    68. Chen, G. S.; Pohl, N. L., Synthesis of fluorous tags for incorporation of reducing sugars into a quantitative microarray platform. Org. Lett. 2008, 10, 785.
    69. Nicholson, R. L.; Ladlow, M. L.; Spring, D. R., Fluorous tagged small molecule microarrays. Chem. Commun. 2007, 3906.
    70. Min Hong, X. Z., Zhiqiang Lu, and Jin Zhu, Nanoparticle-Based, Fluorous-Tag-Driven DNA Detection. Angew. Chem. Int. Ed. 2009, 48, 1.
    71. Beatrice Y.M. Collet , T. N., Marvin S. Yu , Nicola L.B. Pohl, Fluorous-based peptide microarrays for protease screening. J. Fluorine Chem. 2009, 130, 1042.
    72. Northen, T. R.; Lee, J. C.; Hoang, L.; Raymond, J.; Hwang, D. R.; Yannone, S. M.; Wong, C. H.; Siuzdak, G., A nanostructure-initiator mass spectrometry-based enzyme activity assay. Proc. Natl. Acad. Sci. 2008, 105, 3678.
    73. Studer, A.; Hadida, S.; Ferritto, R.; Kim, S. Y.; Jeger, P.; Wipf, P.; Curran, D. P., Fluorous synthesis: a fluorous-phase strategy for improving separation efficiency in organic synthesis. Science 1997, 275, 823.
    74. Maryanoff, B. E.; Reitz, A. B., The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chemical Reviews 1989, 89, 863.
    75. Wiley, G. R.; Miller, S. I., Thermodynamic parameters for hydrogen bonding of chloroform with Lewis bases in cyclohexane. Proton magnetic resonance study. J. Am. Chem. Soc. 1972, 94, 3287.
    76. (a) El-Badri, M. H.; Willenbring, D.; Tantillo, D. J.; Gervay-Hague, J., Mechanistic studies on the stereoselective formation of beta-mannosides from mannosyl iodides using alpha-deuterium kinetic isotope effects. J. Org. Chem. 2007, 72, 4663; (b) Kulkarni, S. S.; Gervay-Hague, J., Efficient synthesis of a C-analogue of the immunogenic bacterial glycolipid BbGL2. Org. Lett. 2006, 8, 5765; (c) Du, W.; Gervay-Hague, J., Efficient synthesis of alpha-galactosyl ceramide analogues using glycosyl iodide donors. Org. Lett. 2005, 7, 2063; (d) Lam, S. N.; Gervay-Hague, J., Glycal scavenging in the synthesis of disaccharides using mannosyl iodide donors. J. Org. Chem. 2005, 70, 2387; (e) Dabideen, D. R.; Gervay-Hague, J., Unique reactions of glycosyl iodides with oxa- and thiocycloalkane acceptors. Org. Lett. 2004, 6, 973; (f) Lam, S. N.; Gervay-Hague, J., Solution- and solid-phase oligosaccharide synthesis using glucosyl iodides: a comparative study. Carbohydr. Res. 2002, 337, 1953; (g) Bhat, A. S.; Gervay-Hague, J., Efficient syntheses of beta-cyanosugars using glycosyl iodides derived from per-O-silylated mono- and disaccharides. Org. Lett. 2001, 3, 2081.
    77. (a) Plettenburg, O.; Bodmer-Narkevitch, V.; Wong, C.-H., Synthesis of α-Galactosyl Ceramide, a Potent Immunostimulatory Agent. The J. Org. Chem. 2002, 67, 4559; (b) Duron, S. G.; Polat, T.; Wong, C.-H., N-(Phenylthio)-ε-caprolactam:  A New Promoter for the Activation of Thioglycosides. Org. Lett. 2004, 6, 839.
    78. Kojima, M.; Nakamura, Y.; Takeuchi, S., A practical fluorous benzylidene acetal protecting group for a quick synthesis of disaccharides. Tetrahedron Letters 2007, 48, 4431.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE