簡易檢索 / 詳目顯示

研究生: 李瑞珍
Lei, Soi-Chan
論文名稱: Quantum Phase Transition and Nonlinear Effects in Optical Cavities
光共振腔量子相變與非線性效應
指導教授: 李瑞光
Lee, Ray-Kuang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 70
中文關鍵詞: Quantum Phase TransitionsNonlinear EffectsOptical Cavities
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this dissertation, we study the ultra-cold atomic many-body quantum phenomena in a quantum cavity. In this study of atom-light interaction, the ground state energy spectra of two-level atoms in a three-dimensional photonic crystal resonant cavity at absolute zero are calculated. We theoretically predict the reversible phenomenon of the quantum phase transition from Mott insulator to superuid and
    also extended it to two atomic species systems. In this study of atom-atom interaction, we find out the analytical solution for steady-state of a Bose-Einstein condensate through pure mathematical analysis. Current experiments can conduct this measurement. These theories, if further developed, will be very useful for the successful development of a quantum computer chip.


    Acknowledgement iii Abstract iv Abstract in Chinese v 1 Overview 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . .....1 1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . 2 2 Quantum Phase Transitions of Light in the Dicke-Bose-Hubbard Model 6 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Light-matter interaction in two-level atom models . . . . . . ........................................8 2.1.2 Bose-Hubbard model . . . . . . . . . . . . . . . ... 9 2.1.3 Quantum phase transitions from a superuid to a Mott insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Quantum phase transition of light . . . . . . . . . . . . . . . . . . . ..............12 2.2.1 In single two-level atom Jaynes-Cummings model . . . . . . ........................................12 2.2.2 The Dicke-Bose-Hubbard model with arbitrary number of two-level atoms . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Eigen solutions, Rabi frequencies, and chemical potentials . . . . . . 15 2.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Photonic analogue of Josephson eect in a dual-species optical- lattice cavity 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Mean-eld solution with only the atomic operators . . . . . 29 3.2.2 Mean-eld solution with only the photonic operators . . . . 32 3.3 Analysis of the mean field equations . . . . . . . . . . . . . . . . . 34 3.3.1 Free energy of the system . . . . . . . . . . . . . . . . . . . 34 3.3.2 Solutions for the special case of identical atoms . . . . . . . 35 3.3.3 The phase diagram for non-identical atoms . . . . . . . . . 37 3.4 Numerical results and discussions . . . . . . . . . . . . . . . . . . . 39 3.4.1 For zero temperature . . . . . . . . . . . . . . . . . . . . . . 40 3.4.2 For nonzero temperature . . . . . . . . . . . . . . . . . . . 40 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 Self-population-inversion a in BEC-cavity-QED system 43 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1 Bose-Einstein condensation in optical cavity quantum electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.2 Nonlinear self-trapping in a two weakly coupled Bose-Einstein condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Proposed Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 Equations of motion and stationary solutions . . . . . . . . . . . . . 52 4.3.1 Excitation parameter ranges . . . . . . . . . . . . . . . . . . 53 4.3.2 Critical charging energies and bifurcations . . . . . . . . . . 53 4.3.3 Josephson current . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Conclusion and future directions 63 Bibliography 66 viii

    Bibliography
    [1] S. Sachdev, "Quantum Phase Transitions," Cambridge University Press,
    (1999).

    [2] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, "Cold
    Bosonic Atoms in Optical Lattices," Phys. Rev. Lett. 81, 3108 (1998).

    [3] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, "Boson
    localization and the superuid-insulator transition," Phys. Rev. B 40, 546
    (1989).

    [4] F. Illuminati, "Light does matter," Nature Physics 2, 803 (2006).

    [5] M. O. Scully and M. S. Zubairy, "Quantum Optics," Cambridge University
    Press, Cambridge, England, (1997).

    [6] Y. Yamamoto and A. Imamogln, "Mesoscopic Quantum Optics," Wiley, New
    York, (1999).

    [7] A. D. Greentree, C. Tahan, J. H. Cole and L. C. L. Hollenberg, "Quantum
    phase transitions of light," Nature Physics 2, 856 (2006).

    [8] M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, "Strongly interacting
    polaritons in coupled arrays of cavities," Nature Physics 2, 849 (2006).

    [9] D. G. Angelakis, M. F. Santos, and S. Bose, "Photon-blockade-induced Mott
    transitions and XY spin models in coupled cavity arrays," Phys. Rev. A 76,
    031805(R) (2007).

    [10] T. C. Jarrett, A. Olaya-Castro, and N. F. Johnson, "Optical signatures of
    quantum phase transitions in a light-matter system," Euro. Phys. Lett., 77,
    34001(2007) .

    [11] H. Walther, B. T H Varcoe, B G Englert and T. Becker, "Cavity quantum
    electrodynamics," Rep. Prog. Phys. 69, 1325 (2006).

    [12] E. T. Jaynes and F.W. Cummings, "Comparison of Quantum and Semiclassical
    Radiation Theory with Application to the Beam Maser," Proc. IEEE
    51, 89 (1963).

    [13] R. H. Dicke, "Coherence in Spontaneous Radiation Processes," Phys. Rev.
    93, 99 (1954).

    [14] L. M. Narducci, M. O. Scully, G. L. Oppo, P. Ru, and J. R. Tredicce, "Spontaneous
    emission and absorption properties of a driven three-level system,"
    Phys. Rev. A 42, 1630 (1990).

    [15] Dissertation of Markus Greiner: "Ultracold quantum gases in threedimensional
    optical lattice potentials," (2003)

    [16] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, "Quantum
    phase transition from a superuid to a Mott insulator in a gas of ultracold
    atoms," Nature 415, 39 (2002).

    [17] S. C. Lei and R. K. Lee, "Quantum phase transitions of light in the Dicke-
    Bose-Hubbard model," Phys. Rev. A 77, 033827 (2008).

    [18] V. Buzek, M. Orszag, and M. Rosko, "Instability and Entanglement of the
    Ground State of the Dicke Model," Phys. Rev. Lett. 94, 163601 (2005).

    [19] R.-F. Liu and C.-C. Chen, "Ground State Instabilities and Entanglement in
    the Detuned Dicke Model," Physica A 374, 631 (2007).

    [20] T. Brandes, "Coherent and Collective Quantum Optical Eects in Mesoscopic
    Systems," Phys. Rep. 4085-6, 315 (2005).

    [21] T. St®ferle, H. Moritz, C. Schori, M. K®hl, and T. Esslinger, "Transition from
    a Strongly Interacting 1D Superuid to a Mott Insulator," Phys. Rev. Lett.
    92, 130403 (2004).

    [22] M. Frasca, "1=N-Expansion for the Dicke model and the decoherence program,"
    Ann. Phys. 313, 26 (2004).

    [23] T. Giamarchi, C. Ruegg and O. Tchernyshyov, "Bose-Einstein condensation
    in magnetic insulators," Nature Physics 4, 198 (2008).

    [24] R. Balili, V. Hartwell, D. Snoke, L. Pfeier, K. West, "Bose-Einstein Condensation
    of Microcavity Polaritons in a Trap," Science 316, 1007 (2007).

    [25] M. J. Hartmann, F. G.S.L. Brandao, and M. B. Plenio, "Eective Spin Systems
    in Coupled Microcavities," Phys. Rev. Lett. 99, 160501 (2007).

    [26] M. J. Hartmann, F. G.S.L. Brandao, and M. B. Plenio, "A polaritonic twocomponent
    Bose-Hubbard model," New J. Phys. 10, 033011 (2008).

    [27] D. Rossini and R. Fazio, "Mott-Insulating and Glassy Phases of Polaritons
    in 1D Arrays of Coupled Cavities," Phys. Rev. Lett. 99, 186401 (2007).

    [28] A. Stean, ""Quantum computing", Rep. Prog. Phys 61, 117 (1998).

    [29] J. Quach, M. Makin, C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg,
    "Band structure, phase transitions, and semiconductor analogs in onedimensional
    solid light systems," Phys. Rev. A 80, 063838 (2009).

    [30] P. Wurtz, T. Langen, T. Gericke, A. Koglbauer, and H. Ott, "Experimental
    Demonstration of Single-Site Addressability in a Two-Dimensional Optical
    Lattice," Phys. Rev. Lett. 103, 080404 (2009).

    [31] S. C. Lei, T. K. Ng, and R. K. Lee, "Photonic analogue of Josephson eect
    in a dual-species optica-lattics cavity," submitted to Optics Express, (2010).

    [32] E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, "Phase diagram of
    two-component bosons on an optical lattice," New J. Phys. 5, 113 (2003).

    [33] T. Mishra, B. K. Sahoo, and R. V. Pai, "Phase-separated charge-density-wave
    phase in the two-species extended Bose-Hubbard model," Phys. Rev. A 78,
    013632 (2008).

    [34] T. K. Ng, "Spinon-holon binding in t-J model," Phys. Rev. B 71, 172509
    (2005).

    [35] B. D. Josephson, "The discovery of tunnelling supercurrents," Rev. Mod.
    Phys. 46, 251 (1974).

    [36] D. Gerace, H. E. Tureci, A. Imamoglu, V. Giovannetti, and R. Fazio, "The
    quantum-optical Josephson interferometer," Nature Physics 5, 281 (2009).

    [37] E. A. Cornell and C. E.Wieman, "Nobel Lecture: Bose-Einstein condensation
    in a dilute gas, the rst 70 years and some recent experiments," Rev. Mod.
    Phys. 74, 875 (2002).

    [38] W. Ketterle, "Nobel lecture: When atoms behave as waves: Bose-Einstein
    condensation and the atom laser," Rev. Mod. Phys. 74, 1131 (2002).

    [39] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, R. Geursen, C. Chin, J.
    Hecker Denschlag, and R. Grimm, "Exploring the BEC-BCS crossover with
    an ultracold gas of 6Li atoms ," arXiv: cond-mat/041271 (Proceedings of
    ICAP-2004), (2004).

    [40] C. A. Regal, M. Greiner, and D. S. Jin, "Observation of Resonance Condensation
    of Fermionic Atom Pairs," Phys. Rev. Lett. 92, 040403 (2004).

    [41] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman,
    and W. Ketterle, "Condensation of Fermionic Atom Pairs Near a Feshbach
    Resonance," Phys. Rev. Lett. 92, 120403 (2004).

    [42] C. J. Pethick and H. Smith, "Bose-Einstein condensation in dilute gases,"
    Cambridge University Press, (2002).

    [43] D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Measurements
    of Relative Phase in Two-Component Bose-Einstein Condensates," Phys. Rev.
    Lett. 81, 1543 (1998).

    [44] Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A.
    E. Leanhardt, "Atom Interferometry with Bose-Einstein Condensates in a
    Double-Well Potential," Phys. Rev. Lett. 92, 050405 (2004).

    [45] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K.
    Oberthaler, "Direct Observation of Tunneling and Nonlinear Self-Trapping
    in a single Bosonic Josephson Junction," Phys. Rev. Lett. 95, 010402 (2005).

    [46] T. Schumm, S. Hoerberth, L. M. Andersson, S. Wildermuth, S. Groth, I.
    Bar-Joseph, J. Schmiedmayer, and P. Krüger, "Matter-wave interferometry
    in a double well on an atom chip," Nature Physics 1, 57 (2005).

    [47] B. P. Anderson, and M. A. Kasevich, "Macroscopic Quantum Interference
    from Atomic Tunnel Arrays," Science 282, 1686 (1998).

    [48] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minard, A. Trombettoni,
    A. Smerzi, and M. Inguscio, "Josephson Junction Arrays with Bose-Einstein
    Condensates," Science 293, 843 (2001).

    [49] I. Bloch, J. Dalibard, and W. Zwerger, "Many-body physics with ultracold
    gases," Rev. Mod. Phys. 80, 885 (2008).

    [50] W. Hansel, P. HommelhoR, T. W. Hansch, and J. Reichel, "BoseEinstein
    condensation on a microelectronic chip," Nature 413, 498 (2001).

    [51] M. A. Kasevich, "Coherence with Atoms," Science 298, 1363 (2002).

    [52] P.R. Berman, "Cavity Quantum Electrodynamics," Academic Press, Boston,
    (1994).

    [53] A. Smerzi, S. Fantoni, S. Giovanazzi, and S.R. Shenoy, "Quantum Coherent
    Atomic Tunneling between Two Trapped Bose-Einstein Condensates," Phys.
    Rev. Lett. 79, 4950 (1997).

    [54] S. Raghavan, A. Smerzi, S. Fantoni, and S.R. Shenoy, "Coherent oscillations
    between two weakly coupled Bose-Einstein condensates: Josephson eects,
    p oscillations, and macroscopic quantum self-trapping," Phys. Rev. A 59,
    620(1999) .

    [55] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, "The a.c. and d.c. Josephson
    eects in a BoseEinstein condensate," Nature 449, 579 (2007)

    [56] J.A. Dunningham, K. Burnett, and M. Edwards, "Relative number squeezing
    in Bose-Einstein condensates," Phys. Rev. A 64, 015601 (2001).

    [57] E. Anderson, T. Calarco, R. Folman, M. Andersson, B. Hessmo, and J.
    Schmiedmayer, "Multimode Interferometer for Guided Matter Waves," Phys.
    Rev. Lett. 88, 100401 (2002).

    [58] E. A. Ostrovskaya and Yu. S. Kivshar, "Matter-Wave Gap Solitons in Atomic
    Band-Gap Structures," Phys. Rev. Lett. 90, 160407 (2003).

    [59] G. Chen , Z. Chen, and J.-Q. Liang, "Ground-state properties for coupled
    Bose-Einstein condensates inside a cavity quantum electrodynamics," Euro.
    Phys. Lett. 80, 40004 (2007).

    [60] S. Kohler and F. Sols, "Oscillatory Decay of a Two-Component Bose-Einstein
    Condensate," Phys. Rev. Lett. 89, 060403 (2002)

    [61] C. Lee, L.-B. Fu, and Y. S. Kivshar, "Many-body quantum coherence and
    interaction blockade in Josephson-linked Bose-Einstein condensates ," Euro.
    Phys. Lett. 81, 60006 (2008).

    [62] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel,
    "Strong atomeld coupling for BoseEinstein condensates in an optical cavity
    on a chip," Nature, 450, 272 (2007).

    [63] F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger,
    "Cavity QED with a BoseEinstein condensate," Nature, 450, 268 (2007).

    [64] D. Nagy, G. Konya, G. Szirmai, and P. Domokos, "Eective Magnetic Fields
    for Stationary Light," Phys. Rev. Lett. 104, 130401 (2010).

    [65] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger. "Dicke quantum
    phase transition with a superuid gas in an optical cavity," Nature 464, 1301
    (2010)

    [66] M. Tavis and F. W. Cummings. "Exact solution for an n-molecule radiation-
    eld hamiltonian," Phys. Rev. 170, 379384 (1968).

    [67] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, "Theory of Bose-
    Einstein condensation in trapped gases," Rev. Mod. Phys., 71, 463(1999) .

    [68] Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni,
    and M.K. Oberthaler, "Nonlinear Self-Trapping of Matter Waves in Periodic
    Potentials," Phys. Rev. Lett. 94, 020403(2005) .

    [69] Dissertation of Rong Cheng: "Theoretical Problems in Spinor Bose-Einstein
    Condensation," (2006)

    [70] C. Lee, "Universality and Anomalous Mean-Field Breakdown of Symmetry-
    Breaking Transitions in a Coupled Two-Component Bose-Einstein Condensate,"
    Phys. Rev. Lett. 102, 070401 (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE