研究生: |
官鈺禪 Guan, Yu-Chan |
---|---|
論文名稱: |
H3+和HeH+中紅外飽和吸收光譜 Mid-Infrared Saturated Absorption Spectroscopy of H3+ and HeH+ |
指導教授: |
施宙聰
Shy, Jow-Tsong |
口試委員: |
王立邦
Wang, Li-Bang 陳益佳 Chen, I-Chia 周哲仲 Chou, Che-Chung 蔡錦俊 Tsai, Chin-Chun 鄭王曜 Cheng, Wang-Yau |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 106 |
中文關鍵詞: | 延伸負光輝區放電 、光學參量放大器 、飽和吸收光譜 、光頻梳 、碘分子穩頻Nd:YAG雷射 、H3+ 、HeH+ 、中紅外光譜儀 、高精密躍遷頻率量測 、二氧化碳 |
外文關鍵詞: | Extended Negative Glow Discharge, Optical Parametric Oscillator, Saturated Absorption Spectroscopy, Optical Frequency Comb, Iodine-Stabilized Nd:YAG Laser, H3+, HeH+, Mid-IR Spectrometer, Precise Transition Frequency Measurements, CO2 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文詳細的描述我們建立的中紅外分子離子飽和吸收光譜儀。首先產生離子的方式是利用一個延伸負光輝區放電管(extended negative glow discharge tube),其優點在於可產生的離子濃度較高且負光輝區域中電場較小。然後我們利用自製的高功率光學參量放大器OPO (optical parametric oscillator)作為雷射光源,量測離子的飽和吸收光譜。為了決定雷射光源的絕對頻率,我們把OPO signal光的頻率鎖在一套光頻梳(optical frequency comb)系統上,並且利用一個可調的偏差鎖頻系統(tunable offset locking system)把OPO pump光的頻率鎖在碘分子穩頻(iodine-stabilized)的Nd:YAG雷射上,利用可調的偏差鎖頻系統,OPO idler光的頻率可以精準的scan並得到飽和吸收光譜。為了校正光譜儀的精確度,我們量測CIPM視為頻率標準的甲烷ν3 band的P(7)躍遷頻率,其量測結果證明光譜儀頻率量測的精確度可達7 kHz以下。此外,此套光譜儀還加入光強度調制跟離子濃度調制來有效的增加量測到離子飽和吸收光譜的訊噪比。
利用這套光譜儀我們量測了16條H3+ ν2基帶(fundamental band)譜線的躍遷頻率和9條HeH+基帶譜線的躍遷頻率。對於訊噪比足夠的光譜,其中心躍遷頻率精確度的決定可達1 MHz以下,這樣的精確度比當前最好理論計算的精確度(~300 MHz)小兩個階數(order)。本論文也呈現了H3+ R(1,0)的飽和吸收光譜譜線變寬參數的研究結果。
此外,我們也量測了23條CO2 [1001,0201]II←0000 band譜線的躍遷頻率,其量測的精確度可達7 ~ 17 kHz(精確度隨著各譜線的訊噪比減少而增加),這個量測結果也定義出更精準[1001,0201]II←0000 band的分子常數(molecular constant),其精確度比目前分子常數的精確度小一個階數(order)。
This dissertation present a versatile mid-IR molecular ion saturated absorption spectrometer capable of measuring rovibrational transition frequencies with sub-MHz accuracy. An extended negative glow discharge tube was used to produce molecular ions. It has the advantages of higher concentration of positive ions and near field-free. The molecular ion transition is probed with sub-Doppler spectra enabled by an optical parametric oscillator (OPO). To determine the transition frequency, the OPO signal frequency was locked to an optical frequency comb. A tunable offset locking system was used to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this offset locking system, the OPO idler frequency could scan precisely and obtain the saturated absorption profile. The accuracy of the OPO idler frequency is 7 kHz, demonstrated by measuring the absolute frequency of the F2(2) component of the P(7) transition in the ν3 band of methane, which is recommended by CIPM as a frequency standard. Furthermore, intensity modulation and ion concentration modulation were employed to increase the signal-to-noise ratio (SNR) of the saturated absorption signal.
Using this spectrometer, we measured 16 ν2 fundamental band transitions of H3+ and 9 fundamental band transitions of HeH+. The transition frequencies with acceptable SNR were able to determine to sub-MHz accuracy, which is better than the current theoretical calculations by two orders of accuracy (~300 MHz) for these two molecular ions. In addition, the homogeneous linewidth broadening parameters of H3+ R(1,0) transition influenced by discharge conditions were studied.
In addition, absolute frequencies of 23 carbon dioxide transitions ranging from J = 2 to 70 for both the P and R branches in the [1001,0201]II ← 0000 band near 2.7 μm had been measured to the uncertainties varying from 7 to 17 kHz by using this spectrometer. A refined set of molecular constants were obtained which gave the differences between measured and calculated values of less than 7 kHz.
[1] H. C. Chen, C. Y. Hsiao, J. L. Peng, T. Amano, and J. T. Shy, “High-resolution sub-doppler lamb dips of the ν2 fundamental band of H+3 ,” Physical Review Letters 109, 263002–1 (2012).
[2] B. Chapman, “Glow discharge processes: sputtering and plasma etching,” Wiley (1980).
[3] J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Physical Review Letters 88, 173901–1 (2002).
[4] P. L. Luo, Y. C. Guan, J. L. Peng, J. T. Shy, and L. B. Wang, “Measurement of the 21P1 →31D2 transition frequency in 4He,” Physical Review A 88, 054501–1 (2013).
[5] Y. C. Huang, Y. C. Guan, T. H. Suen, J. T. Shy, and L. B. Wang, “Absolute frequency measurement of the molecular iodine hyperfine transitions at 647 nm,” arXiv preprint arXiv:1710.09533 (2017).
[6] L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown et al., “The HITRAN2012 molecular spectroscopic database,” Journal of Quantitative Spectroscopy and Radiative Transfer 130, 4 (2013).
[7] D. A. Long, G. W. Truong, J. T. Hodges, and C. E. Miller, “Absolute 12C16O2 transition frequencies at the kHz-level from 1.6 to 7.8 μm,” Journal of Quantitative Spectroscopy and Radiative Transfer 130, 112 (2013).
[8] B. J. McCall, “Spectroscopy of H+3 in laboratory and astrophysical plasmas,” Ph.D. Dissertation, University of Chicago (2001).
[9] J. K. G. Watson, “Higher-order vibration-rotation energies of the X3 molecule,” Journal of Molec- ular Spectroscopy 103, 350 (1984).
[10] A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “Communication: High precision sub-Doppler infrared spectroscopy of the HeH+ ion,” The Journal of Chemical Physics 141, 101101–1 (2014).
[11] P. Bernath and T. Amano, “Detection of the infrared fundamental band of HeH+,” Physical Review Letters 48, 20 (1982).
[12] K. Y. Wu, “Precision measurement of the ν2-band of triatomic hydrogen molecular ion H+3 ,” Ph.D. Dissertation, National Tsing Hua University (2008).
[13] W. J. Ting, “Precision mid-IR spectroscopy of N2O and H+3 ,” Ph.D. Dissertation, National Tsing Hua University (2015).
[14] H. C. Chen, C. Y. Hsiao, W. J. Ting, S. T. Lin, and J. T. Shy, “Saturation spectroscopy of CO2 and frequency stabilization of an optical parametric oscillator at 2.77 μm,” Optics Letters 37, 2409 (2012).
[15] J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, “High-precision and high- accuracy rovibrational spectroscopy of molecular ions,” Journal of Chemical Physics 139, 164201–1 (2013).
[16] P. Jusko, C. Konietzko, S. Schlemmer, and O. Asvany, “Frequency comb assisted measurement of fundamental transitions of cold H+3 , H2D+ and D2H+,” Journal of Molecular Spectroscopy 319, 55 (2016).
[17] H. C. Chen, “High resolution saturation absorption spectroscopy of H+3 molecular ion,” Ph.D. Dissertation, National Tsing Hua University (2013).
[18] Y. R. Lin, “Tunable mid-IR difference frequency generation source and precise spectroscopy of helium hydride molecular ion HeH+,” Ph.D. Dissertation, National Tsing Hua University (2003).
[19] F. C. De Lucia, E. Herbst, G. M. Plummer, and G. A. Blake, “The production of large concentra- tions of molecular ions in the lengthened negative glow region of a discharge,” Journal of Chemical Physics 78, 2312 (1983).
[20] T. Amano and A. Maeda, “Double-modulation submillimeter-wave spectroscopy of HOC+ in the ν2 excited vibrational state,” Journal of Molecular Spectroscopy 203, 140 (2000).
[21] R. W. Boyd, “Nonlinear Optics,” Elsevier (2008).
[22] W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Optics Letters 21, 1336 (1996).
[23] G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” Journal of Applied Physics 39, 3597 (1968).
[24] M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Applied Physics B: Lasers and Optics 94, 411 (2009).
[25] T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103 (2003).
[26] J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Optics Letters 7, 537 (1982).
[27] J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Applied Physics Letters 39, 680 (1981).
[28] U. Schu ̈nemann, H. Engler, R. Grimm, M. Weidemu ̈ller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Review Of Scientific Instruments 70, 242 (1999).
[29] P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measure- ment,” Measurement Science and Technology 20, 052001–1 (2009).
[30] J. L. Peng, H. Ahn, R. H. Shu, H. C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Applied Physics B 86, 49 (2006).
[31] J. L. Peng, T. A. Liu, and R. H. Shu, “Self-referenced Er-fiber laser comb with 300 MHz comb spacing,” 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum p. 344 (2009).
[32] K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Optics letters 18, 1080 (1993).
[33] “Trends in atmospheric carbon dioxide,” National Oceanic and Atmospheric Administration, Earth System Research Laboratory https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.
[34] A. Predoi-Cross, A. V. Unni, W. Liu, I. Schofield, C. Holladay, A. R. W. McKellar, and D. Hurt- mans, “Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012←00001 and 30013←00001 bands, line mixing, and speed dependence,” Journal of Molecular Spectroscopy 245, 34 (2007).
[35] C. Lorius, J. Jouzel, C. Ritz, L. Merlivat, N. I. Barkov, Y. S. Korotkevich, and V. M. Kotlyakov, “A 150,000-year climatic record from Antarctic ice,” Nature 316, 591 (1985).
[36] J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue et al., “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429 (1999).
[37] I. P. O. C. Change, “Climate change 2007: The physical science basis,” Agenda 6, 333 (2007).
[38] S. Boland, H. B ̈osch, L. Brown, J. Burrows, P. Ciais, B. Connor, D. Crisp, S. Denning, S. Doney, R. Engelen et al., “The need for atmospheric carbon dioxide measurements from space: Contribu- tions from a rapid reflight of the Orbiting Carbon Observatory,” White paper to NASA (2009).
[39] N. Jacquinet-Husson, L. Crepeau, R. Armante, C. Boutammine, A. Ch ́edin, N. A. Scott, C. Crevoisier, V. Capelle, C. Boone, N. Poulet-Crovisier et al., “The 2009 edition of the GEISA spectroscopic database,” Journal of Quantitative Spectroscopy and Radiative Transfer 112, 2395 (2011).
[40] A. G. Maki, C. C. Chou, K. M. Evenson, L. R. Zink, and J. T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” Journal of Molecular Spectroscopy 167, 211 (1994).
[41] D. Bailly, S. A. Tashkun, V. I. Perevalov, J. L. Teffo, and P. h. Arcas, “Flame spectra of CO2 in the 3-μm region,” Journal of Molecular Spectroscopy 197, 114 (1999).
[42] C. C. Chou, A. G. Maki, S. J. Tochitsky, J. T. Shy, K. M. Evenson, and L. R. Zink, “Frequency mea- surements and molecular constants of CO2 0002-[1001,0201]I,II sequence band transitions,” Journal of Molecular Spectroscopy 172, 233 (1995).
[43] A. Groh, D. Goddon, M. Schneider, W. Zimmermann, and W. Urban, “Sub-Doppler heterodyne frequency measurements on the CO2 10011-00001 vibrational band: new reference lines near 3714 cm−1,” Journal of Molecular Spectroscopy 146, 161 (1991).
[44] D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. Hollberg, “Saturated- absorption spectroscopy with low-power difference-frequency radiation,” Optics Letters 25, 350 (2000).
[45] D. Mazzotti, S. Borri, P. Cancio, G. Giusfredi, and P. De Natale, “Low-power Lamb-dip spec- troscopy of very weak CO2 transitions near 4.25 μm,” Optics Letters 27, 1256 (2002).
[46] A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated- absorption spectroscopy of CO2 at 4.3 μm by means of a distributed feedback quantum cascade laser,” Optics Letters 31, 3040 (2006).
[47] A. Amy-Klein, H. Vigu ́e, and C. Chardonnet, “Absolute frequency measurement of 12C16O2 laser lines with a femtosecond laser comb and new determination of the 12C16O2 molecular constants and frequency grid,” Journal of Molecular Spectroscopy 228, 206 (2004).
[48] D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Optics Letters 30, 997 (2005).
[49] C. C. Liao, K. Y. Wu, Y. H. Lien, and J. T. Shy, “High precision mid-IR spectroscopy of 12C16O2: 0001←0000 band near 4.3 μm,” The 63th International Symposium on Molecular Spectroscopy (2008).
[50] W. J. Ting, P. L. Luo, C. H. Chung, H. C. Chen, Y. H. Lien, and J. T. Shy, “High precision mid-IR spectroscopy of 12C16O2 near 4.3 μm,” The 64th International Symposium on Molecular Spectroscopy (2009).
[51] K. Y. Wu, C. C. Liao, Y. H. Lien, and J. T. Shy, “High precision mid-IR spectroscopy of 12C16O2: [1001,0201]I ←0000 band near 2.7 μm,” The 63th International Symposium on Molecular Spec- troscopy (2008).
[52] R. R. Gamache and J. Lamouroux, “Predicting accurate line shape parameters for CO2 transitions,” Journal of Quantitative Spectroscopy and Radiative Transfer 130, 158 (2013).
[53] Y. C. Guan, D. N. Patel, B. H. Peng, T. H. Suen, L. B. Wang, and J. T. Shy, “Frequency measure- ments and molecular constants of the 12C16O2 [1001, 0201]II ←0000 band near 2.7 μm,” Journal of Molecular Spectroscopy 334, 26 (2017).
[54] J. J. Thomson, “Rays of positive electricity,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 21, 225 (1911).
[55] T. Oka, “Observation of the infrared spectrum of H+3 ,” Physical Review Letters 45, 531 (1980).
[56] D. W. Martin, E. W. McDaniel, and M. L. Meeks, “On the possible occurence of H+3 in interstellar
space,” The Astrophysical Journal 134, 1012 (1961).
[57] W. D. Watson, “The rate of formation of interstellar molecules by ion-molecule reactions,” The Astrophysical Journal 183, L17 (1973).
[58] E. Herbst and W. Klemperer, “The formation and depletion of molecules in dense interstellar clouds,” The Astrophysical Journal 185, 505 (1973).
[59] P. Drossart, J. P. Maillard, J. Caldwell, S. J. Kim, J. K. G. Watson, W. A. Majewski, J. Tennyson, S. Miller, S. K. Atreya, J. T. Clarke, J. H. Waite, and R. Wagener, “Detection of H+3 on Jupiter,” Nature 340, 539 (1989).
[60] T. Oka, “The infrared spectrum of H+3 in laboratory and space plasmas,” Reviews of Modern Physics 64, 1141 (1992).
[61] T. R. Geballe and T. Oka, “Detection of H+3 in interstellar space,” Nature 384, 334 (1996).
[62] D. Rego, N. Achilleos, T. Stallard, S. Miller, R. Prang ́e, M. Dougherty, and R. D. Joseph, “Super-
sonic winds in Jupiter’s aurorae,” Nature 399, 121 (1999).
[63] N. Indriolo and B. J. McCall, “Investigating the cosmic-ray ionization rate in the galactic diffuse
interstellar medium through observations of H+3 ,” The Astrophysical Journal 745, 91 (2012).
[64] B. J. McCall, K. H. Hinkle, T. R. Geballe, and T. Oka, “H+3 in dense and diffuse clouds,” Faraday
Discussions 109, 267 (1998).
[65] K. N. Crabtree, N. Indriolo, H. Kreckel, B. A. Tom, and B. J. McCall, “On the ortho:para ratio of
H+3 in diffuse molecular clouds,” The Astrophysical Journal 729, 15 (2011).
[66] K. N. Crabtree and B. J. McCall, “The ortho:para ratio of H+3 in laboratory and astrophysical
plasmas,” Philosophical Transactions of the Royal Society A 370, 5055 (2012).
[67] M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Cs ́asz ́ar, M. Berg, A. Petrignani, and A. Wolf, “Precision measurements and computations of transition energies in rotationally cold triatomic hydrogen ions up to the midvisible spectral range,” Physical Review Letters 108, 023002–1 (2012).
[68] L. G. Diniz, J. R. Mohallem, A. Alijah, M. Pavanello, L. Adamowicz, O. L. Polyansky, and J. Ten- nyson, “Vibrationally and rotationally nonadiabatic calculations on H+3 using coordinate-dependent vibrational and rotational masses,” Physical Review A 88, 032506–1 (2013).
[69] L. Lodi, O. L. Polyansky, J. Tennyson, A. Alijah, and N. F. Zobov, “QED correction for H+3 ,” Physical Review A 89, 032505–1 (2014).
[70] B. J. McCall, “Laboratory spectroscopy of H+3 ,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 358, 2385 (2000).
[71] C. M. Lindsay and B. J. McCall, “Comprehensive evaluation and compilation of H+3 spectroscopy,” Journal of Molecular Spectroscopy 210, 60 (2001).
[72] S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chemical Reviews 105, 3220 (2005).
[73] P. N. B. Neves, J. Escada, F. I. G. M. Borges, L. M. N. T ́avora, and C. A. N. Conde, “Experimental measurement of H+3 /H+5 and D+3 /D+5 mobilities in their parent gases,” Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE p. 1793 (2011).
[74] P. W. Smith and T. Ha ̈nsch, “Cross-relaxation effects in the saturation of the 6328- ̊A neon-laser line,” Physical Review Letters 26, 740 (1971).
[75] A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “Highly accurate and precise infrared transition frequencies of the H+3 cation,” The 71st International Symposium on Molecular Spectroscopy MH03 (2016).
[76] A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “High-precision R-branch transition frequencies in the ν2 fundamental band of H+3 ,” Journal of Molecular Spectroscopy 317, 71 (2015).
[77] C. M. Lindsay, R. M. Rade Jr., and T. Oka, “Survey of H+3 transitions between 3000 and 4200 cm−1,” Journal of Molecular Spectroscopy 210, 51 (2001).
[78] P. R. Berman, “Theory of collision effects on atomic and molecular line shapes,” Applied Physics A: Materials Science & Processing 6, 283 (1975).
[79] P. R. Berman, “Theory of collision effects in Doppler-free spectroscopy,” Physical Review A 13, 2191 (1976).
[80] C. Brechignac, R. Vetter, and P. R. Berman, “Influence of collisions on saturated-absorption profiles of the 557 nm line of Kr I,” Journal of Physics B: Atomic and Molecular Physics 10, 3443 (1977).
[81] C. Brechignac, R. Vetter, and P. R. Berman, “Study of velocity-changing collisions in excited Kr using saturation spectroscopy,” Physical Review A 17, 1609 (1978).
[82] A. Sasso, G. M. Tino, M. Inguscio, N. Beverini, and M. Francesconi, “Investigation of collisional lineshapes of neon transitions in noble gases’ mixtures,” Il Nuovo Cimento D 10, 941 (1988).
[83] T. R. Hogness and E. G. Lunn, “The ionization of hydrogen by electron impact as interpreted by positive ray analysis,” Physical Review 26, 44 (1925).
[84] D. E. Tolliver, G. A. Kyrala, and W. H. Wing, “Observation of the infrared spectrum of the helium-hydride molecular ion 4HeH+,” Physical Review Letters 43, 1719 (1979).
[85] A. Carrington, J. Buttenshaw, R. A. Kennedy, and T. P. Softley, “Observation of bound to quasi- bound vibration-rotation transitions in the HeH+ ion,” Molecular Physics 44, 1233 (1981).
[86] A. Carrington, R. A. Kennedy, T. P. Softley, P. G. Fournier, and E. G. Richard, “Infrared bound to quasibound vibration-rotation spectrum of HeH+ and its isotopes,” Chemical Physics 81, 251 (1983).
[87] C. E. Blom, K. M ̈oller, and R. R. Filgueira, “Gas discharge modulation using fast electronic switches: application to HeH+,” Chemical Physics Letters 140, 489 (1987).
[88] J. Purder, S. Civiˇs, C. E. Blom, and M. C. van Hemert, “Diode laser spectra and potential energy curve for the molecular ion HeH+,” Journal of Molecular Spectroscopy 153, 701 (1992).
[89] M. W. Crofton, R. S. Altman, N. N. Haese, and T. Oka, “Infrared spectra of 4HeH+, 4HeD+, 3HeH+, and 3HeD+,” The Journal of Chemical Physics 91, 5882 (1989).
[90] D. J. Liu, W. C. Ho, and T. Oka, “Rotational spectroscopy of molecular ions using diode lasers,” The Journal of Chemical Physics 87, 2442 (1987).
[91] F. Matsushima, T. Oka, and K. Takagi, “Observation of the rotational spectra of 4HeH+, 4HeD+, 3HeH+, and 3HeD+,” Physical Review Letters 78, 1664 (1997).
[92] Z. Liu and P. B. Davies, “Infrared laser absorption spectroscopy of rotational and vibration rota- tional transitions of HeH+ up to the dissociation threshold,” The Journal of Chemical Physics 107, 337 (1997).
[93] Z. Liu and P. B. Davies, “Measurement of the pure rotational quasibound spectrum of HeH+ in a laboratory plasma by direct laser absorption,” Physical Review Letters 79, 2779 (1997).
[94] S. Lepp, P. C. Stancil, and A. Dalgarno, “Atomic and molecular processes in the early universe,” Journal of Physics B: Atomic, Molecular and Optical Physics 35, R57 (2002).
[95] S. Lepp, “Pregalactic chemistry,” Astrophysics and Space Science 285, 737 (2003).
[96] S. Lepp and J. M. Shull, “Molecules in the early universe,” The Astrophysical Journal 280, 465
(1984).
[97] I. Dabrowski and G. Herzberg, “The predicted infrared spectrum of HeH+ and its possible astrophysical importance,” Transactions of the New York Academy of Sciences 38, 14 (1977).
[98] C. Cecchi-Pestellini and A. Dalgarno, “Emission of HeH+ in nebulae,” The Astrophysical Journal 413, 611 (1993).
[99] X. W. Liu, M. J. Barlow, A. Dalgarno, J. Tennyson, T. Lim, B. M. Swinyard, J. Cernicharo, P. Cox, J. P. Baluteau et al., “An ISO long wavelength spectrometer detection of CH in NGC 7027 and an HeH+ upper limit,” Monthly Notices of the Royal Astronomical Society 290, L71 (1997).
[100] H. L. Dinerstein and T. R. Geballe, “Detection and significance of [Zn IV] 3.625 microns in planetary nebulae,” The Astrophysical Journal 562, 515 (2001).
[101] K. Pachucki and J. Komasa, “Rovibrational levels of helium hydride ion,” The Journal of Chemical Physics 137, 204314–1 (2012).
[102]J.Komasa,K.Piszczatowski,G.L ach,M.Przybytek,B.Jeziorski,andK.Pachucki,“Quantum electrodynamics effects in rovibrational spectra of molecular hydrogen,” Journal of Chemical Theory and Computation 7, 3105 (2011).
[103] R. E. Moss, “Energies of low-lying vibration-rotation levels of H+2 and its isotopomers,” Journal of Physics B: Atomic, Molecular and Optical Physics 32, L89 (1999).
[104] W. C. Tung, M. Pavanello, and L. Adamowicz, “Accurate potential energy curves for HeH+ iso- topologues,” The Journal of Chemical Physics 137, 164305–1 (2012).
[105] M. Stanke, D. Kedziera, M. Molski, S. Bubin, M. Barysz, and L. Adamowicz, “Convergence of experiment and theory on the pure vibrational spectrum of HeH+,” Physical Review Letters 96, 233002–1 (2006).
[106] D. M. Bishop and L. M. Cheung, “A theoretical investigation of HeH+,” Journal of Molecular Spectroscopy 75, 462 (1979).
[107] W. Roberge and A. Dalgarno, “The formation and destruction of HeH+ in astrophysical plasmas,” The Astrophysical Journal 255, 489 (1982).
[108] R. Johnsen and M. A. Biondi, “Measurements of ion-molecule reactions of He+, H+, and HeH+ with H2 and D2,” The Journal of Chemical Physics 61, 2112 (1974).
[109] G. Bekefi, “Principles of laser plasmas,” Wiley (1976).
[110] R. H. Neynaber, G. D. Magnuson, and J. K. Layton, “Formation of HeH+ from low-energy collisions
of metastable helium and molecular hydrogen,” The Journal of Chemical Physics 57, 5128 (1972).
[111]W. A. Chupka and M. E. Russell, “Photoionization study of ion-molecule reactions in mixtures of hydrogen and rare gases,” The Journal of Chemical Physics 49, 5426 (1968).
[112]H. Hotop and A. Niehaus, “Reactions of excited atoms and molecules with atoms and molecules,” Zeitschrift fu ̈r Physik 215, 395 (1968).
[113]D. W. Martin, C. Weiser, R. F. Sperlein, D. L. Bernfeld, and P. E. Siska, “Collision energy depen- dence of product branching in Penning ionization: He∗ (21S, 23S) + H2, D2, and HD,” The Journal of Chemical Physics 90, 1564 (1989).