研究生: |
謝殷程 Hsieh, Yin-Cheng |
---|---|
論文名稱: |
自硫酸鹽還原菌 Desulfovibrio gigas 中三種形式的亞硫酸鹽還原酶之結構與特性探討其催化機制 Structural insights into the enzyme catalysis from comparison of three forms of dissimilatory sulfite reductase from desulfovibrio gigas |
指導教授: |
吳文桂
Wu, Wen-Guey 陳俊榮 Chen, Chun-Jung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 144 |
中文關鍵詞: | 亞硫酸 、亞硫酸還原酶 、結構 、晶體 |
外文關鍵詞: | sulfite, sulfite reductase, structure, crystal |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
亞硫酸鹽還原酶在硫酸鹽還原菌中扮演著催化亞硫酸鹽反應成為硫分子的機制。在這個研究中我們解出了硫酸鹽還原菌 Desulfovibrio gigas 中兩種有活性的亞硫酸鹽還原酶﹣Dsr-I (解析度 1.76 A) 和 Dsr-II (解析度 2.05 A) ﹣的晶體結構。結果顯示第一種亞硫酸還原酶是 α2β2γ2 的二分子聚合體 (dimer) 並且含有八個四鐵四硫群,兩個馬鞍形狀的西羅血紅素 (siroheme) 以及兩個 sirohydrochlorin。第一種亞硫酸還原酶的西羅血紅素與四鐵四硫群結合,然而第二種亞硫酸還原酶在這個位置使用了三鐵四硫群取代,並且第二種亞硫酸還原酶裡原本用來鍵結第四個鐵原子的 Cysβ188被Cysβ145 取代。在這兩種亞硫酸還原酶中存在著一條正電荷通道連結西羅血紅素與sirohydrochlorin,我們發現這個通道的開口被 ferredoxin domain 上的一段氨基酸蓋住。在第一種亞硫酸還原酶裡 γ 次單位使用 C 端氨基酸 Cysγ104 深入 α 次單位和 β 次單位形成之正電通道且和西羅血紅素中的 CHA 原子鍵結,然而在第二種亞硫酸還原酶裡這個鍵結被打斷並把 Cysγ104 的琉原子移到西羅血紅素上的亞硫酸鹽附近。除此之外,γ 次單位的 C 端在兩種亞硫酸還原酶裡還存在著 Cysγ93 與 Cysγ104 鍵結的位向。除了活性中心的亞硫酸分子外,我們也發現了 Lysγ100 附件有第二個亞硫酸分子,這個發現使我們對於亞硫酸分子如何進入活性中心有進一步了解。我們也使用電子自旋共振研究亞硫酸還原酶。電子自旋共振圖譜確認了第一種與第二種亞硫酸鹽還原酶晶體結構的結果,但是第三種無活性亞硫酸還原酶在電子自旋共振圖譜中顯示西羅血紅
素不含鐵原子中心,同時它也和第二種亞硫酸還原酶一樣使用三鐵四硫群和去鐵西羅血紅素結合。這三種形式的亞硫酸還原酶結構研究使我們對於硫酸鹽還原過程如何產
生連三硫酸根,硫代硫酸根和硫分子的反應機制有了進一步了解。
Sulfite reductase mediates the reduction of sulfite to sulfide in sulfate-reducing bacteria. Here, we compare the crystal structures between two distinct forms of the dissimilatory sulfite reductase (Dsr), desulfoviridin, from Desulfovibrio gigas, Dsr-I and Dsr- II, at 1.76 and 2.1 A resolution, respectively. The dimeric α2β2γ2 structure of Dsr-I contains eight [4Fe-4S] clusters, two saddle-shaped sirohemes and two flat sirohydrochlorins. In Dsr- II, the [4Fe-4S] cluster associated with each of the siroheme in Dsr-I is replaced by a [3Fe-4S] cluster. This structural feature allows Thrβ145 to position itself closer to the [3Fe-4S] in Dsr- II to replace the role of the Cysβ188 that ligates the [4Fe-4S] in Dsr-I. In both Dsr forms, each of the sirohydrochlorins is located in a putative substrate channel connected to the siroheme and capped by a dynamic loop from the ferredoxin domain. The γ-subunit C-terminus is inserted into a positively charged channel formed between the α- and β-subunits, with its conserved terminal Cysγ104 side chain covalently linked to the CHA atom of the siroheme in Dsr-I. In Dsr-II, the thiolate bond is broken, and the Cysγ104 side chain moves closer to the
bound sulfite at the siroheme pocket. Moreover, the γ-subunit in the region of the C- terminus reveals another arrangement with an interaction between Cysγ93 and Cysγ104 in both Dsr-I and Dsr-II. Beside the sulfite in the active site, a second sulfite interacting with the conserved Lysγ100 has also been identified, implicating this site as the entry into a putative substrate channel. Electron paramagnetic resonance (EPR) of the active Dsr-I and Dsr-II confirm the co-factor structures, whereas EPR of a third but inactive form, Dsr-III, suggests that the siroheme has been demetallated in addition to its associated [4Fe-4S] cluster replaced by a [3Fe-4S] center. A catalytic mechanism that can lead to S3O62−, S2O32− and S2−, the three distinct products observed in the dissimilatory sulfite reduction, is proposed.
Bauman, A., Koenig, J.F., Dutreix, J., and Garcia, J.L. (1990) Characterization of two
sulfate-reducing bacteria from the gut of the soil-feeding termite, Curitermes
speciosus. J Gen Mol Biol 58: 271-275.
Beinert, H., Holm, R.H., and Munck, E. (1997) Iron-sulfur clusters: nature's modular,
multipurpose structures. Science 277: 653-659.
Brandis, A., and Thauer, R.K. (1981) Growth of Desulfovibrio species on hydrogen
and sulphate as sole energy source. J Gen Microbiol 126: 249-252.
Broco, M., Rousset, M., Oliveira, S., and Rodrigues-Pousada, C. (2005) Deletion of
flavoredoxin gene in Desulfovibrio gigas reveals its participation in thiosulfate
reduction. FEBS Letters 579: 4803-4807.
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve,
R.W. et al. (1998) Crystallography and NMR system: a new software suite for
macromolecular structure determination. Acta Crystallogr D 54: 905–921.
Bruschi, M., Hatchikian, C., Le Gall, J., Moura, J.J., and Xavier, A.V. (1976)
Purification, characterization and biological activity of three forms of ferredoxin
from the sulfate-reducing bacterium Desulfovibrio gigas. Biochim Biophys Acta
449: 275-284.
Badziong, W., Thauer, R.K., and Zeikus, J.G. (1978) Isolation and characterization of
Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch
Microbiol 116: 41-49.
Barton, L.L., and Tomei, F.A. (1995) Characteristics and activities of sulfate-reducing
bacteria, in: Biotechnology handbooks (L.L. Barton, eds.), pp. 1-32.
46
Calzolai, L., Zhou, Z.H., Adams, M.W.W. and La Mar, G.N. (1996) The role of clusterligated
aspartate in gating electron transfer in the four-iron ferredoxin from the
hyperthermophilic archaeon Pyrococcus furiosus. J Am Chem Soc 118: 2513-
2514.
Campbell, L.L., and Singleton, R.Jr. (1986) Genus IV. Desulfotomaculum, in:
Bergey’s Manual of Systematic Bacteriology (P.H.A. Sneath, N.S. Mair, M.E.
Sharpe and J.G. Holt, eds.) Williams & Wilkins, Baltimore, pp. 1200-1205.
Chambers, L.A., and Trudinger, P.A. (1975) Are thiosulfate and trithionate
intermediates in dissimilatory sulfate reduction? J Bacteriol 123: 36-40.
Champier, L., Sibille, N., Bersch, B., Brutscher, B., Blackledge, M., and Coves J.
(2002) Reactivity, secondary structure, and molecular topology of the Escherichia
coli sulfite reductase flavodoxin-like domain. Biochemistry 41, 3370-3780.
Charles, J.R., and Brian, R.G. (2004) Heme protein assemblies. Chem Rev 104:
617-649.
Chiang, Y.L., Hsieh, Y.C., Fang, J.Y., Liu, E.H., Huang, Y.C., Chuankhayan, P. et al.
(2009) Crystal structure of adenylysulfate reductase from Desulfovibrio gigas
suggests a potential self-regulation mechanism involving the C terminus of the β-
subunit. J Bacteriol 191: 7597-7608.
Christl, S.U., Gibson, G.R., and Cummings, J.H. (1992) Role of dietary sulphate in
the regulation of methanogenesis in the human large intestine. Gut 33: 1234-1238.
Cort, J.R., Mariappan, S.V., Kim, C.Y., Park, M.S., Pear, T.S., Waldo, G.S., et al.
(2001) Solution structure of Pyrobaculum aerophilum DsrC, an archaeal
homologue of the gamma subunit of dissimilatory sulfite reductase. Eur J Biochem
268: 5842-5850.
47
Cort, J.R., Selan, U., Schulte, A., Grimm, F., Kennedy, M.A., and Dahl, C. (2008)
Allochromatium vinosum DsrC: solution-state NMR structure, redox properties,
and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur
oxidation. J Mol Biol 382: 692-707.
Crane, B.R., and Getzoff, E.D. (1996) The relationship between structure and
function for the sulfite reductases. Curr Opin Struct Biol 6: 744-756.
Crane, B.R., Siegel, L.M., and Getzoff, E.D. (1995) Sulfite reductase structure at 1.6
A: evolution and catalysis for reduction of inorganic anions. Science 270: 59-67.
Cypionka, H. (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbio
54: 827-848.
Dhillon, A., Goswami, S., Riley, M., Teske, A., and Sogin, M. (2005) Domain
evolution and functional diversification of sulfite reductases. Astrobiology 5: 18-29.
Dinh, H.T., Kuever, J., Mussmann, M., Hassel, A.W., Stratmann, M., and Widdle, F.
(2004) Iron corrosion by novel anaerobic microorganisms. Nature 427: 829-832.
Drake, H.L., and Akagi, J.M. (1976) Product analysis of bisulfite reductase activity
isolated from Desulfovibrio vulgaris. J Bacteriol 126: 733-738.
Duderstadt, R. E., Brereton, P. S., Adams, M. W. W, Johnson, M. K. (1998)
Spectroscopic evidence for a new type of [Fe3S4] cluster in a mutant form of
Pyrococcus furiosus ferrdoxin. J Am Chem Soc 120: 8525-8526.
Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics.
Acta crystallogr D 60: 2126-2132.
Fareleira, P., Santos, B.S., Antonio, C., Moradas-Ferreira, P., LeGall, J., Xavier, A.V.,
and Santos, H. (2003) Response of a strict anaerobe to ozygen: survival strategies
in Desulfovibrio gigas. Microbiology 149: 1513-1522.
48
Fauque, G., Lino, A.R., Czechowsku, M., Kang, L., DerVartanian, D.V., Moura, J.J. et
al. (1990) Purification and characterization of bisulfite reductase (desulfofuscidin)
from Desulfovibrio thermophilus and its complexes with exogenous ligands.
Biochim Biophys Acta 1040: 112-118.
Ferreira, G.C., Franco, R., Lloyd, S.G., Pereira, A.S., Moura, I., Moura, J.J., and
Huynh, B.H. (1994) Mammalian ferrochelatase, a new addition to the
metalloenzyme family. J Biol Chem 269: 7062-7065.
Fitz, R.M., and Cypionka, H. (1990) Formation of thiosulfate and trithionate during
sulfite reduction by washed cells of defulfovibrio desulfuricans. Arch Microbiol 154:
400-406.
Gibson, G.R., Cummings, J.H., and Macfarlane, G.T. (1988) Use of a three-stage
continuous culture system to study the effect of mucin on dissimilatory sulfate
reduction and methanogenesis by mixed populations of human gut baeteria. Appl
Environ Microbiol 54: 2750-2755.
Gibson, G.R., Cummings, J.H., and Macfarlane, G.T. (1991) Growth and activities of
sulphate-reducing bacteria in gut contents of healthy subjects and patients with
ulcerative colitis. FEMS Microbiol Ecol 86: 1003-1111.
Gibson, G.R., Macfarlane, G.T., and Cummings, J.H. (1993) Sulphate reducing
bacteria and hydrogen metabolism in the human large intestine. Gut 34: 437-439.
Gruez, A., Pignol, D., Zeghouf, M., Coves, J., Fontecave, M., Ferrer, J.L., et al.
(2000) Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite
reductase indicate a disordered flavodoxin-like module. J Mol Biol 299: 199-212.
Hatchikian, E.C., and Zeikus, J.G. (1983) Characterization of a new type of
dissimilatory sulfite reductase present in Thermodesulfobacterium commune. J
Bacteriol 153: 1211-1220.
49
Hamilton, W.A. (1998) Bioenergetics of sulphate-reducing bacteria in relation to their
environmental impact. Biodegradation 9: 201-212.
Hammack, R.W., and Edenborn, H.M. (1992) The removal of nickel from mine waters
using bacterial sulfate reduction. Appl Microbiol Biotech 37: 674-678.
Hatchikian, E.C., and Zeikus, J.G. (1983) Characterization of a new type of
dissimilatory sulfite reductase present in Thermodesulfobacterium commune. J
Bacteriol 153: 1211-1220.
Haveman, S.A., Brunelle, V., Voordouw, J.K., Voordouw, G., Heidelberg, J.F., and
Rabus, R. (2003) Gene expression analysis of energy metabolism mutants of
Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol
dehydrogenase. J Bacteriol 185: 4345-4353.
Haveman, S.A., Greene, E.A., Stilwell, C.P., Voordouw, J.K., and Voordouw, G.
(2004) Physiological and gene expression analysis of inhibition of Desulfovibrio
vulgaris hildenborough by nitrite. J Bacteriol 186: 7944-7950.
Heidelberg, J.F., Seshadri, R., Haveman, S.A., Hemme, C.L., Paulsen, I.T., Kolonay,
J.F. et al. (2004) The genome sequence of the anaerobic, sulfate-reducing
bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22: 554-559.
Hunsicker-Wang, L.M., Heine, A., Chen, Y., Luna, E.P., Todaro, T., and Zhang, Y.M.
(2003) High-resolution structure of the soluble, respiratory-type Rieske protein
from Thermus thermophilus: analysis and comparison. Biochemistry 42: 7303-
7317.
Hsieh, Y.C., Liu, M.Y., Wang, V.C.C., Chiang, Y.L., Liu, E.H., Wu, W.W., et al. (2010)
Structural insights into the enzyme catalysis from comparison of three forms of
dissimilatory sulphite reductase from Desulfovibrio gigas. Molcecular Microbiology
in press.
50
Johnson, D.C., Dean, D.R., Smith, A.D., and Johnson, M.K. (2005) Structure,
function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:
247-281.
Jones, T.A., Zou, J.Y., Cowan, S.W., and Kjeldgaard, M. (1991) Improved methods
for building protein models in electron-density maps and the location of errors in
these models. Acta Crystallor A 47: 110-119.
Jones, H.E., and Skyring, G.W. (1974) Reduction of sulphite to sulphide catalysed by
desulfoviridin from Desulfovibrio gigas. Aust J Boil Sci 27: 7-14.
Jones, H.E., and Skyring, G.W. (1975) Effect of enzymic assay conditions on sulfite
reduction catalysed by desulfoviridin from Desulfovibrio gigas. Biochim Biophys
Acta 377: 52-60.
Kent, T.A., Dreyer, J.L., Kennedy, M.C., Huynh, B.H., Emptage, M.H., Beinert, H. et
al. (1982) Mossbauer studies of beef heart aconitase: evidence for facile
interconversions of iron-sulfur clusters. Proc Natl Acad Sci USA 79: 1096-1100.
Kent, T.A., Emptage, M.H. Merkle, H., Kennedy, M.C., Beinert, H., and Munck, E.
(1985) Mossbauer studies of aconitase. Substrate and inhibitor binding, reaction
intermediates, and hyperfine interactions of reduced 3Fe and 4Fe clusters. J Biol
Chem 260: 6871-6881.
Khoroshilova, N., Popescu, C., Munck, E., Beinert, H., and Kiley, P.J. (1997) Ironsulfur
cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to
[2Fe-2S] conversion with loss of biological activity. Proc Natl Acad Sci USA 94:
6087-6092.
Klimmek, O. (2005) The biological cycle of sulfur. Met Ions Biol Syst 43: 105-130.
51
Kobayashi, K., Tachibana, S., and Ishimoto, M. (1969) Intermediary formation of
trithionate in sulfite reduction by a sulfate-reducing bacterium. J Biochem (Tokyo)
65: 155-157.
Kopriva, S., and Koprivova, A. (2004) Plant adenosine 5'-phosphosulphate
reductase: the past, the present, and the future. J Expe Bota 55: 1775-1783.
Kunkel, A., Vaupel, M., Heim, S., Thauer, R.K., and Hedderich, R. (1997)
Heterodisulfide reductase from methanol-grown cells of Methanosarcina barker is
not a flavoenzyme. Eur J Biochem 244: 226-234.
Lakomek, K., Dickmanns, A., Ciirdaeva, E., Schomacher, L., and Ficner, R. (2010)
Crystal structure analysis of DNA uridine endonuclease Mth212 bound to DNA. J
Mol Biol 399: 604-617.
Lee, J.P., and Peck, J.H.D. (1971) Purification of the enzyme reducing bisulfite to
trithionate from Desulfovibrio gigas and its identification as desulfoviridin. Biochem
Biophys Res Commun 45: 583-589.
Lee, J.P., Yi, C.S., LeGall, J., and Peck Jr., H.D. (1973) Isolation of a new pigment,
desulforubidin, form Desulfovibrio desulfuricans (Norway strain) and its role in
sulfite reduction. J Bacteriol 115: 453-455.
Link, T.A. (1999) The structures of Rieske and Rieske-type proteins. Adv Inorg Chem
47: 83-157
Liu, C.L., DerVartanian, D.V., and Peck, H.D.J. (1979) On the redox properties of
three bisulfite reductases from the sulfate-reducing bacteria. Biochem Biophys
Res Commun 91: 962-970.
Macfarlane, G.T., Gibson, G.R., and Cummings, J.H. (1992) Comparison of
fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:
57-62.
52
Mander, G.J., Weiss, M.S., Hedderich, R., Kahnt, J., Ermler, U., and Warkentin, E.
(2005) X-ray structure of the γ-subunit of a dissimilatory sulfite reductase: fixed
and flexible C-terminal arms. FEBS Lett 579: 4600-4604.
Marritt, S.J., and Hagen, W.F. (1996) Dissimilatory sulfite reductase revisited: the
desulfoviridin molecule does contain 20 iron ions, extensively demetallated
sirohaem, and an S = 9/2 iron-sulfur cluster. Eur J Biochem 238: 724-727.
Matias, P.M., Pereira, I.A., Soares, C.M., and Carrondo, M.A. (2005) Sulphate
respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview.
Prog Biophys Mol Biol 89: 292-329.
Messias, A.C., Aguiar, A.P., Brennan, L., Salgueiro, C.A., Saraiva, L.M., Xavier, A.V.,
Turner, D.L. (2006) Solution structures of tetrahaem ferricytochrome c3 from
Desulfovibrio vulgaris (Hildenborough) and its K45Q mutant: the molecular basis
of cooperativity. Biochim Biophys Acta 1757:143-153.
Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S., and Dutton, P.L. (1992) Nature
of biological electron transfer. Nature 355: 796-802.
Moura, I., Legall, J., Lino, A.R., Peck, H.D., Fauque, G., Xavier, A.V. et al. (1988)
Characterization of two dissimilatory sulfite reductases (desulforubidin and
desulfoviridin) from the sultate-reducing bacteria. Mossbauer and EPR studies. J.
Am. Chem. Soc. 110: 1075-1082.
Moura, J.J., Moura, I., Kent, T.A., Lipscomb, J.D., Huynh, B.H., LeGall, J. et al.
(1982) Interconversions of [3Fe-3S] and [4Fe-4S] clusters. Mossbauer and
electron paramagnetic resonance studies of Desulfovibrio gigas ferredoxin II. J
Biol Chem 257: 6259-6267.
53
Murshudov, G.N., Vagin, A.A., and Dodson, E. (1997). Refinement of
macromolecular structures by the maximum-likelihood method. Acta crystallogr D
53: 240-255.
Odom, J.M. and Peck Jr, H.D. (1981) Hydrogen cycling as a general mechanism for
energy coupling in the sulfate-reducing bateria, Defulfovibrio sp.. FEMS Microbiol
Lett 12: 47-50.
Oliveira, T.F., Vonrhein, C., Matias, P.M., Venceslau, S.S., Pereira, I.A., and Archer,
M. (2008) The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite
reductase bound to DsrC provides novel insights into the mechanism of sulfate
respiration. J Biol Chem 283: 34141-34149.
Otwinowski, Z., and Minor, W. (Academic Press, New York, 1997) Processing of xray
diffraction data collected in oscillation mode. Methods in Enzymology,
Macromolecular Crystallography Part A, eds Charles W, Carter J, volume 276, pp
307-326.
Peck, H.D.Jr. (1961) Enzymatic basis for assimilatory and dissimilatory sulfate
reduction. J Bacteriol 82: 933-939.
Pierik, A.J., Duyvis, M.G., Helvoort, J.M., Wolbert, R.B., and Hagen, W.R. (1992) The
third subunit of desulfoviridin-type dissimilatory sulfite reductases. Eur J Biochem
205: 111-115.
Pires, R.H., Venceslau, S.S., Morais, F., Teixeira, M., Xavier, A.V., and Pereira,
I.A.C. (2006) Characterization of the Desulfovibrio desulfuricans ATCC 27774
DsrMKJOP complex - a membrane-bound redox complex involved in sulfate
respiratory pathway. Biochemistry 45: 249-262.
54
Pochart, P., Dore, J., Lemann, F., Goderel, I., and Rambaud, J.C. (1992)
Interrelations between populations of methanogenic archaea and sulfate-reducing
bacteria in the human colon. FEMS Microbiol Lett 77: 225-228.
Schiffer, A., Parey, K., Warkentin, E., Diederichs, K., Huber, H., Stetter, K.O., et al.
(2008) Structure of the dissimilatory sulfite reductase from the hyperthermophilic
archaeon Archaeoglobus fulgidus. J Mol Biol 379: 1063-1074.
Seki, Y., Kobayashi, K., and Ishimoto, M. (1979) Biochemical studies on sulfatereducing
bacteria. J Biochem 85: 705-711.
Sibille, N., Blackledge, M., Brutscher, B., Coves, J., and Bersch, B. (2005) Solution
structure of the sulfite reductase flavodoxin-like domain from Escherichia coli.
Biochemistry 44: 9086-9095.
Sieker, L.C., Turley, S., Prickril, B.C., and LeGall, J. (1988) Crystallization and
preliminary X-ray diffraction study of a protein with a high potential rubredoxin
center and a hemerythrin-type Fe center. Proteins 3:184-186.
Sievert, S.M., Kiene, R.P., and Schulz-vogt, H.N. (2007) The sulfur cycle.
Oceanography 20:117-123.
Skyring, G.W., and Jones, H.E. (1976) Variations in the spectrum of desulfoviridin
from Desulfovibrio gigas. Aust J Biol Sci 29: 291-299.
Steuber, J., Arendsen, A.F., Hagen, W.R., and Kroneck, P.M. (1995) Molecular
properties of the dissimilatory sulfite reductase from Desulfovibrio desulfuricans
(Essex) and comparison with the enzyme from Desulfovibrio vulgaris
(Hildenborough). Eur J Biochem 233: 873-879.
Stroupe, M.E., and Getzoff, E.D. (2001) Sulfite reductase hemoprotein. in Handbook
of Metalloproteins, eds Messerschmidt A, Huber R, Poulos T, Wieghardt K, pp
471-485.
55
Terwilliger, T.C. (2003) Automated main-chain model building by template matching
and iterative fragment extension. Acta Crystallogr D 59: 38-44.
Terwilliger, T.C., and Berendzen, J. (1999) Automated MAD and MIR structure
solution. Acta Crystallogr D 55: 849-861.
Trinkerl, M., Breunig, A., Schauder, R., and Konig, H. (1990) Desulfovibrio termitidis
sp. Nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of
a termite. Syst and Appl Microbiol 13: 372-377.
Trudinger, P.A. (1970) Carbon monoxide-reacting pigment from Desulfotomaculum
nigrificans and its possible relevance to sulfite reduction. J Bacteriol 104: 158-170.
Tsaneva, I.R., and Weiss, B. (1990) SoxR, a locus governing a superoxide response
regulon in Escherichia coli K-12. J Bacteriol 172: 4197-4205.
Tsuji, K., and Yagi, T. (1980) Significance of hydrogen burst from growing cultures of
Desulfovibrio vulgaris Miyazaki, and the role of hydrogenase, and cytochrome c3 in
energy production system. Arch Microbiol 125: 35-42.
Voordouw, G., Niviere, V., Ferris, F.G., Fedorak, P.M., and Westlake, D.W.S. (1990)
Distribution of hydrogenase genes in Desulfovibrio spp. and their use in
identification of species from the oil field environment. Appl Environ Microbiol 56:
3748-3754.
Voordouw, G. (2002) Carbon monoxide cycling by Desulfovibrio vulgaris
Hildenborough. J Bacteriol 184: 5903-5911.
Weiss, M.S., Mander, G., Hedderich, R., Diederichs, K., Ermler, U., and Warkentin,
E. (2004) Determination of a novel structure by a combination of long-wavelength
sulfur phasing and radiation-damage-induced phasing. Acta Crystallogr D, 60:
686-695.
56
Widdal, R., and Pfennig, N. (1984) Dissimmilatory sulfate- or sulfur-reducing bacteria,
in: Bergey’s Manual of Systematic Bacteriology (N. R. Krieg and J. G. Schleifer,
eds.) Williams & Wilkins, Baltimore, pp. 663-679.
Winn, M.D., Isupov, M.N., and Murshudov, G.N. (2001) Use of TLS parameters to
model anisotropic displacements in macromolecular refinement. Acta Crystallogr D
57: 122-133.
Wolfe, B.M., Lui, S.M., and Cowan, J.A. (1994) Desulfoviridin, a multimericdissimilatory
sulfite reductase from Desulfovibrio vulgaris (Hildenborough).
Purification, characterization, kinetics and EPR studies. Eur J Biochem 223: 79-
89.