簡易檢索 / 詳目顯示

研究生: 林子楓
Tz-Feng Lin
論文名稱: Induced Twisting in Self-assembly of Chiral Schiff-based Rod-Coil Amphiphiles
糖類旋光性之硬桿-柔軟兩性分子自組裝中的誘導螺旋行為
指導教授: 何榮銘
Rong-Ming Ho
許千樹
Chain-Shu Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 90
中文關鍵詞: 誘導螺旋球晶兩性分子分子模擬
外文關鍵詞: Induced Twisting, Hierarchical Self-assembly, Chiral Sugar-based Rod-Coil, Amphiphiles, Banded Spherulite, Simulation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Nature elegantly utilizes the self-assembly of supramolecules to construct functional superstructures. The self-assembled superstructures are formed by cooperatively secondary forces such as amphiphilic effect, polar ability, hydrogen bonding, columbic interactions, van der Waals forces, metal coordination, ionic bonding, and the chirality. Among them, the chiral effect on the self-assembly is essential for the formation of helical morphology. A variety of helical morphology including helical conformation, hierarchical helical structures and helical crystalline morphology have been observed in the self-assembly. Recently, helical superstructures have been obtained from the self-assembly of amphiphilic block copolymers containing charged helical blocks in buffer solutions. The chiral effect on the self-assembly of block copolymers (i.e., coil-coil molecules) is essential for the formation of helical morphology. In contrast to coil-coil molecules, the self-assembly rod-coil molecules possess strong segregation strength for phase separation due to the characteristics of rod segment. As a result, they are able to self-assemble into periodic textures even for small oligomeric molecules so as to provide an excellent system for the examination of chiral effect on self-assembled superstructures. Amphiphilic molecules offer numerous opportunities for chemical variations, and thus provide a crucial direction for the controlled fabrication of superstructures. The self-assembly of chiral lipid molecules (i.e., chiral amphiphiles) has been extensively studied, and a variety of dynamically changing morphologies in liquid crystalline (fluid) state were observed. Carbohydrate sugars provide a rich library of chiral building blocks, which are also biocompatible that makes them attractive candidates for being used successfully in the design of self-assembly chemistry. The morphologies of sugar-based amphiphiles affected by the introduction of different hydrophilic or hydrophobic parts and of unsaturation in the lipophilic moiety have been thoughtfully studied. However, how chiral information transfers from primary molecular structure to quaternary aggregates for the self-assembly system is still a challenging course to scientists. Recently, our research group demonstrated a novel nanohelical structure that was obtained from the self-assembly of chiral block copolymers, poly(styrene)-block-poly(L-lactide) (PS-PLLA). Here, we simply introduce a sugar entity of (i.e., a chiral entity) to rod-coil molecules. The self-assembly of the sugar-based rod-coil amphiphiles gives rise to a variety of interesting morphology. The central theme of this study is to understand the self-assembly processes by exploring various secondary forces, in particular the effect of chirality. We attempt to examine the self-assembly mechanisms in different environments including solution and bulk states so as to understand the kinetic processes of assembly.
    The studies of sugar-based rod-coil amphiphiles have been carried out by differential scanning calorimetry (DSC), ultraviolet-visible spectrum (UV), circular dichroism (CD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), and scanning probe microscopy (SPM) experiments. Sugar-based rod-coil amphiphiles exhibited both the lyotropic and thermotropic liquid crystalline behavior from our works. It is noted that complicate self-assembly process is involved in solution state. The sugar-based rod-coil amphiphiles appeared positive Cotton effect materials, and there is no odd-even effect with respect to the alkyl chain length of coil. Interestingly, we observed that the alkyl chain length of LC9 might be long enough to interrupt the arrangement of rod segments driven by liquid crystalline phase transformation. The self-assembly of LC9 and LC11 in solution or from melt appeared left-handed helical morphology as observed by TEM, FESEM and SPM. Surprisingly, banded spherulites were observed in the self-assembly of the chiral sugar-based rod-coil amphiphiles in bulk or thin film. The formation of the superstructure is driven by thermotropic liquid crystal behavior whilst the chiral effect of sugar-based entity induces the twisting of molecular aggregation. As a result, the transfer of chiral information from molecular level to quaternary superstructure can be identified.


    List of Illustrations............................................................................... III Chapter 1. Introduction........................................................................... 1 1.1 Supramolecular Chemistry and Self-assembly................................... 1 1.2 Self-assembly of Coil-coil and Rod-coil Molecules……………….. 4 1.3 Chiral Effect in the Self-assembly…………………………………. 7 1.4 Theory of Tilted Chiral Lipid Bilayers(TCLB) in the Self-assembly 18 1.5 Self-assembly of Sugar-based Molecules..........…............................ 23 1.6 Objectives of This Work..................………………………….......... 36 Chapter 2. Experimental section............................................................ 38 2.1 Materials............................................................................................. 38 2.2 Experimental...................................................................................... 40 2.2.1 Differential Scanning Calorimeter (DSC).................................. 40 2.2.2 Polarized Light Microscopy (PLM)........................................... 41 2.2.3 Wide Angle X-ray Diffraction (WAXD).................................... 41 2.2.4 Transmission Electron Microscope (TEM)................................ 41 2.2.5 Scanning Probe Microscopy (SPM) ......................................… 42 2.2.6 Field Emission Scanning Electron Microscopy (FE-SEM)....... 42 2.2.7 Ultraviolet-Visible Spectrum(UV) and Circular Dichroism(CD) 43 2.3 Specimen Preparation........................................................................ 44 2.3.1 Supramolecular Self-assembly in Thin Film State.................... 44 2.3.2 Aggregate Formation in Dilute Solution.................................... 44 2.4 Results and Discussion....................................................................... 45 2.4.1 Exceptional Observations of Banded Spherulites...................... 45 2.4.2 Self-assembly Morphology in Solution..................................... 50 2.4.3 Thermal Behavior...................................................................... 64 2.4.4 Self-assembly Morphology in Thin Film................................... 68 2.5.5 Proposed Mechanism of the Chiral Rod-Coil Self-assembling. 76 2.5 Future Works...................................................................................... 80 Reference.................................................................................................. 82 List of Illustrations Chapter 1 Figure 1. Phase diagram for conformationally symmetric diblock melts. Phase are labeled L (lamellar), H (hexagonal cylinders), QIa3d (bicontinuous Ia3d cubic), QIm3m (bcc spheres), CPS (close-packed spheres), and DIS (disordered)…..…...……….6 Figure 2. A DF image of a helical lamellar crystal uses the partial (205) and (206) diffraction arcs. The circled parts of the diffraction arcs in the ED pattern are inserted in this Figure. Note that the (201) diffraction is not included in the electron diffraction circle, therefore, the (201) diffraction is extinction in this DF image.......................................................................................11 Figure 3. 3D TEM micrograph of microphase separated PS-b-PLLA...14 Figure 4. The molecular origin of helical morphology exists in the molecules assembly. The ψ degree responses for molecular bending that minimize the short range intermolecular interactions. The θ degree responses for molecular twisting that relative to the substitute group size.…..……………..….20 Figure 5. The cylindrical geometry has a radius r and length L. The molecular director d is tilted by both bending ψ degree with respect to the equator of the cylinder and twisting θ degree with respect to the curved surface normal..…………………21 Figure 6. Illustration of the transformation structure from the vesicle to helical morphology accords to the local tilt direction.......…..22 Figure 7. SEM and TEM images of the 5~7 self-assembly in aqueous solutions. (a) 5 shows the twisted fiber structure with 50~200 nm widths and several micrometers of length. (b) 6 shows the left-handed coiled tube with 150~200 nm inner diameters and 20 nm of wall as the minor morphology, and (c) 6 shows the helical ribbon structures as the major morphology, showing the influence of double bonds on the final morphology of the self-assembly structures. (d) 7 displays the helical ribbon morphology with 80~100 nm of outer diameters as the minor morphology and (e) 7 displays the nanotubular structure as the major morphology with ca. 70 nm of inner diameters and a wall thickness of 20~30 nm………………………..….…….25 Figure 8. (A and B) FE-SEM and (C and D) TEM images of the double-helical silica nanotube obtained from the mixed gel of 8 and 9 (1:1 w/w) after calcination, and (E) schematic representation of the double-helical structure of the silica nanotubes through SEM and TEM observations. a and b indicate two silica nanotubes from which the double helixes are constructed (parts B and D).……………………………..26 Figure 9. Schematic illustration of the conformational and thermal phase behavior observed for bolaamphiphiles.………...………..…29 Figure 10. Interdigitated smectic A structure of the galactose derivative 13……………………………………………………….……33 Figure 11. A columnar structure of the glucose derivative 12 formed in the lamellar phase due to the introduction of curvature into the system………………………………………….…………….34 Figure 12. Disordered rectangular columnar structure of the glucose derivative 12. The aliphatic tails of the molecules will interpenetrate from one column to the next……………...….35 Chapter 2 Figure 1. In the top view, the lamella is seen from its growth direction. Due to the asymmetry generated by chain tilt, differences in fold encumbrance (due to conformation differences, etc) are supposed to exist on opposite fold surfaces of the lamella. The resulting unbalanced surface stresses, if exerted on half-lamellae split along their growth direction (middle view), would induce a lamellar curvature, opposite for different half-lamellae. In bulk crystallization however, the half lamellae are seamed together, and the whole lamella twists to relieve the surface stresses (bottom view).……………....….48 Figure 2. PLM images of LC11 thermally treated at 125oC in thin film. Left image is without gypsum plate. Right image is with gypsum that shows positive birefringence of band spherulites……………………………………….……..……49 Figure 3. The UV and CD results of 4-NADG in THF and water.…….54 Figure 4. The UV results of LC5 and LC7~LC13 in THF……….……55 Figure 5. The CD results of LC5 and LC7~LC13 in THF………...…..56 Figure 6. The time-resolved UV spectra of the LC11 self-assembly in THF/water = 1/10. The absorption intensity at 346nm would decrease with time…………………..…..………………….. 57 Figure 7. FESEM (left) and TEM (right) observations of LC7 (up) and LC8 (botton) show platelet-like structure.…………………. 58 Figure 8. FESEM (left) and TEM (right) observations of LC9 (up) show platelet-like and left-handed helical structure; LC10 (botton) show left-handed helical twists..…………………………….59 Figure 9. FESEM (left) and TEM (right) observations of LC11 (up), LC12 (middle), and LC13 (botton) show left-handed helical twists……………………………………………………….. 60 Figure 10. TEM observations of LC18 show left-handed helical twists..61 Figure 11. FE-SEM observation of LC11 with Au coating shows left-handed helical fibers from several individual left-handed helical aggregates in TEM…………………………………..62 Figure 12. Left-handed helical fibers of LC11 from several individual left-handed helical aggregates in AFM analysis of (a) topography and (b) phase images…………………………....63 Figure 13. Sets of DSC cooling and heating curves for LC11.….….…..66 Figure 14. Sets of LC5, LC7~LC13, LC18 DSC heating thermograms in 10oC/min. LC13 and LC18 DSC cooling thermograms exhibit crystallization peak………………………………………….67 Figure 15. TEM image of LC9 with left-handed helical structure on the carbon film with thermal treatment then 30o tilt shadow by Pt:Pb = 4:1 to the surface.……………….……………….….71 Figure 16. TEM image of LC11 with left-handed helical structure on the carbon film with thermal treatment then 30o tilt shadow by Pt:Pb = 4:1 to the surface…………..…………………….….72 Figure 17. SAXS result of LC11 that d-spacing is 5.61nm……...……...73 Figure 18. TEM image of LC11 crystallization on the carbon film with thermal treatment then 30o tilt shadow by Pt:Pb = 4:1 to the surface. The SAED is sketched by guided line to help identify the lattice parameter…………………………………………74 Figure 19. WAXD result of LC11 in different scans…….......………….75 Figure 20. Schematic illustration of LC11 modeling result with 64 molecules packed into a twist structure in the self-assembly..78 Figure 21. Hierarchical self-assembly of chiral information delivered....79

    (1) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418-2421.
    (2) Philip, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-1196.
    (3) Deng, T.; Chenb,C.; Honekerb,C.; Thomas, E. L. Polymer 2003, 44, 6549-6553.
    (4) Muthukumar, M.; Ober, C. K., Thomas, E. L. Science 2002, 277, 1225-1232.
    (5) Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. J. Mater. Chem. 2003, 13, 2661-2670.
    (6) Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, Germany, 1995.
    (7) Lehn, J.-M. Science 2002, 295, 2400-2409.
    (8) Barboiu, M.; Vaughan, G.; Kyritsakas, N.; Lehn, J.-M. Chem. Eur. J. 2003, 9, 763-769.
    (9) Kato, T. Science 2002, 295, 2414-2418.
    (10) Kanie, K.; Yasuda, T.; Ujiie, S.; Kato, T. Chem. Commun. 2000, 19, 1899-1900.
    (11) Kanie, K.; Nishii, M.; Yasuda, T.; Taki, T.; Ujiie, S.; Kato, T. J. Mater. Chem., 2001, 11, 2875–2886.
    (12) Kato, T.; Matsuoka, T.;Nishii, M.; Kamikawa,Y.; Kanie,K.; Nishimura,T.; Yashima, E.; Ujiie, S. Angew. Chem. Int. Ed. 2004, 43, 1969-1972.
    (13) Schenning, A. P. H. J.; Herrikhuyzen, J. V.; Jonkheijm, P.; Chen, Z.; WJrthner, F.; Meijer, E. W. J. Am. Chem. Soc. 2002, 124, 10252-10253.
    (14) Hamley, I. W. The Physics of Block Copolymers; VCH: Oxford University, New York, 1998.
    (15) Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525-557.
    (16) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091-1098.
    (17) Klok, H.-A.; Lecommandoux, S. Adv. Mater. 2001, 13, 1217-1229.
    (18) Ruokolainen, J.; Tanner, J.; Ikkala, O.; ten Brinke, G.; Thomas, E. L. Macromolecules 1998, 31, 3532-3536.
    (19) Ruokolainen, J.; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Science 1998, 280, 557-560.
    (20) Ruokolainen, J.; ten Brinke, G.; Ikkala, O. Adv. Mater. 1999, 11, 777-781.
    (21) Ikkala, O.; ten Brinke, G. Science 2002, 295, 2407-2409.
    (22) Halperin, A. Macromolecules 1990, 23, 2724-2731.
    (23) Lee, M; Cho, B.-K.; Jang, Y.-G.; Zin, W.-C. J. Am. Chem. Soc. 2000, 122, 7449-7455.
    (24) Lee, M.; Yoo, Y.-S. J. Mater. Chem. 2002, 12, 2161-2168.
    (25) Ryu, J.-H.; Oh, N.-K.; Zin, W.-C.; Lee, M J. Am. Chem. Soc. 2004, 126, 3551-3558.
    (26) Chen, J. T.; Thomas, E. L.; Ober, C. K.; Mao, G.-P. Science 1996, 273, 343-346.
    (27) Osuji, C.; Chao, C.-Y.; Bita, I.; Ober, C. K.; Thomas, E. L. Adv. Func. Mater. 2002, 12, 735-758.
    (28) Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. J. Am. Chem. Soc. 2001, 123, 4105-4106.

    (29) Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705-1709.
    (30) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Kesser, M.; Amstutz, A. Science 1997, 276, 384-389.
    (31) Stupp, S. I.; Braun, P. V. Science 1997, 277, 1242-1248.
    (32) Zubarev, E. R.; Pralle, M. U.; Li, L.; Stupp, S. I. Science 1999, 283, 523-527.
    (33) Tracz, A.; Jeszka, J. K.; Watson, M. D.; Pisula, W.; Mullen, K.; Pakula, T. J. Am. Chem. Soc. 2003, 125, 1682-1683.
    (34) Thunemann, A. F.; Ruppelt, D.; Ito, S.; Mullen, K. J. Mater. Chem. 1999, 9, 1055-1057.
    (35) Thunemann, A. F.; Ruppelt, D.; Burger, C.; Mullen, K. J. Mater. Chem. 2000, 10, 1325-1329.
    (36) Thunemann, A. F.; Kubowicz, S.; Burger, C.; Watson, M. D.; Tchebotareva, N.; Mullen, K. J. Am. Chem. Soc. 2003, 125, 352-356.
    (37) Watson, M. D.; Jackel, F.; Severin, N.; Rabe, J. P.; Mullen, K. J. Am. Chem. Soc. 2004, 126, 1402-1407.
    (38) Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. Adv. Mater. 2005, 17, 684-689.
    (39) Lee, M.; Kim, J. W.; Peleshanko, S.; Larson, K.; Yoo, Y. S.; Vaknin, D.; Markutsya, S.; Tsukruk, V. V. J. Am. Chem. Soc. 2002, 124, 9121-9128.
    (40) Hill, J. P.; Jin, W. S.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481-1483.
    (41) Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1427-1430.
    (42) Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. Rev. 2001, 101, 4039-4070.
    (43) Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289-8294.
    (44) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science 1999, 284, 785-788.
    (45) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793-1796.
    (46) Gin, M. S.; Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 1999, 121, 2643-2644.
    (47) Mio, M. J.; Prince, R. B.; Moore, J. S.; Kuebel, C.; Martin, D. C. J. Am. Chem. Soc. 2000, 122, 6134-6135.
    (48) Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S. Angew.Chem., Int. Ed. 2000, 39, 228-230.
    (49) Brunsveld, L.;Prince, R. B.; Meijer, E. W.; Moore, J. S. Org. Lett. 2000, 2, 1525-1528.
    (50) Morino, K.; Maeda, K.; Yashima, E. Macromolecules 2003, 36, 1480-1486.
    (51) Sakurai, S.-I.; Kuroyanagi, K; Morino, K.; Kunitake, M; Yashima, E. Macromolecules 2003, 36, 9670-9674.
    (52) Goto, H; Okamoto, Y; Yashima, E. Macromolecules 2002, 35, 4590-4601.
    (53) Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1997, 119, 6345-6359.
    (54) Yashima, E.; Maeda, K.; Okamoto, Y. Nature 1999, 99, 449-451.
    (55) Maeda, K.; Morino, K.; Yashima, E. J. Polym., Sci. Part A: Polym. Chem. 2003, 41, 3625–3631.
    (56) Yashima, E.; Maeda, K.; Nishimura T. Chem. Eur. J. 2004, 10, 42-51.
    (57) Yashima, E.; Nimura, T.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1996, 118, 9800.
    (58) Saito, M. A.; Maeda, K.; Onouchi, H.; Yashima, E. Macromolecules 2000, 33, 4616.
    (59) Onouchi, H.; Maeda, K.; Yashima, E. J. Am. Chem. Soc. 2001, 123, 7441.
    (60) Brunsveld, L.; Zhang, H.; Vekemans, J. A. J. M.; Meijer, E.W. J. Am. Chem. Soc. 2000, 122, 6175-6182.
    (61) Brunsveld, L.; Lohmeijer, B. G. G.; Vekemans, J. A. J. M.; Meijer, E.W. Chem. Commun. 2000, 23, 2305-2306.
    (62) Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E.W. Nature 2000, 407, 167-170.
    (63) Schenning, A. P. H. J.; Jonkheijm, P.; Peeters, E.; Meijer, E.W. J. Am. Chem. Soc. 2001, 123, 409-416.
    (64) Jonkheim, P.; Hoeben, F. J. M.; Kleppinger, R.; Herrikhuyzen, J. V.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2003, 125, 15941-15949.
    (65) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001, 101, 4071-4097.
    (66) Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; Feyter, S. De; Schenning, A. P. H. J.; Schryver, F. C. De; Meijer, E.W. Angew. Chem. Int. Ed. 2004, 43, 74-78.
    (67) Brunsveld, L.; Vekemans, J. A. J. M.; Hirschberg, J. H. K. K.; Sijbesma, R. P.; Meijer, E.W. Proc. Natl. Acad. Sci. USA 2002, 99, 4977-4982.
    (68) Yoon, Y.; Zhang, A.; Ho, R.-M.; Cheng, S. Z. D.; Percec, V.;Chu, P. Macromolecules 1995, 29, 294-305.
    (69) Yoon, Y.; Ho, R.-M.; Moon, B.; Kim, D.; McCreight, K. W.; Li, F.-M.; Harris, F. W.; Cheng, S. Z. D.; Percec, V.; Chu, P. Macromolecules 1996, 29, 3421-3431.
    (70) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Chien, L.-C.; Harris, F. W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72-79.
    (71) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Macromolecules 1999, 32, 524-527.
    (72) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; Ge, J. J.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phy. Rev. B. 1999, 60, 12675-12680.
    (73) Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Yan, D.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558-4561.
    (74) Weng, X.; Li, C. Y.; Jin, S.; Zhang, D.; Zhang, J. Z.; Bai, F.; Harris, F. W.; Cheng, S. Z. D. Macromolecules 2002, 35, 9678-9686.
    (75) Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C. C.; Ko, B. T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704-2705.
    (76) Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W.; Lin, C. C.; Ko, B. T. submitted to J. Am. Chem. Soc., in prepared.

    (77) A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. B. Mcleish, A. N. Semenov, N. Boden, Proc. Natl. Acad. Sci. USA, 2001, 98, 11857-11862.
    (78) Kitzerow, H. -S.; Bahr, C. Chirality in liquid crystals; VCH: Springer, New York, 2001.
    (79) Helfrich, W.; Prost,J. Phys. Rev. A 1988, 38, 3065-3068.
    (80) Ou-Yang, Z. C.; Liu, J. X. Phys. Rev. Lett. 1990, 65, 1679-1682.
    (81) Ou-Yang, Z. C.; Liu, J. X. Phys. Rev. A 1991, 43, 6826-6836.
    (82) Selinger, J. V.; Schnur. J. M. Phys. Rev. Lett. 1993, 71, 4091-4094.
    (83) Selinger, J. V.; MacKintosh, F. C.; Schnur, J. M. Phys. Rev. E 1996, 53, 3804-3818.
    (84) Nandi, N.; Bagchi, B. J. Am. Chem. Soc. 1996, 118, 11208-11216.
    (85) Nandi, N.; Bagchi, B. J. Phys. Chem. A 1997, 101, 1343-1351.
    (86) Fuhrhop, J. H.; Helfrich, W. Chem. Rev. 1993, 93, 1565-1582.
    (87) Fuhrhop, J. H.; Schnieder, P.; Boekema, E.; Helfrich, W. J. Am. Chem. Soc. 1988, 110, 2861-2867.
    (88) Spector, M. S.; Price, R. R.; Schnur, J. M. Adv. Mater., 1999, 11, 337-340.
    (89) Spector, M. S.; Selinger, J. V.; Singh, A.; Rodriguez, J. M.; Price, R. R.; Schnur, J. M. Langmuir 1998, 14, 3493-3500.
    (90) Gronwald, O.; Shinkai, S. Chem. Eur. J. 2001, 7, 4328-4334.
    (91) van Doren, H. A.; Smits, E.; Pestman, J. M.; Engberts, J. B. F. N.; Kellogg, R. M. Chem. Soc. Rev., 2000, 29, 183-199.
    (92) Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903-1907.
    (93) Jung, J. H.; Yoshida, K.; Shimizu, T. Langmuir 2002, 18, 8724-8727.
    (94) Estroff, L. A.; Hamilton, A. D. Chem. Rev. 2004, 104, 1201-1217.
    (95) John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. Adv. Mater. 2001, 13, 715-718.
    (96) John, G.; Jung, J. H.; Minamikawa, H.; Yoshida, K.; Shimizu, T. Chem. Eur. J. 2002, 8, 5495-5500.
    (97) Shimizu, T.; John, G.; Masuda, M.; Okada, Y.; Yase, K. Adv. Mater. 2001, 13, 715-718.
    (98) Shimizu, T.; Jung, J. H.; John, G.; Yoshida, K. J. Am. Chem. Soc. 2002, 124, 10674-10675.
    (99) Shimizu, T.; Jung, J. H.; Yoshida, K. Langmuir 2002, 18, 8724-8727.
    (100) Masuda, M.; Vill, V.; Shimizu, T. J. Am. Chem. Soc. 2002, 122, 12327-12333.
    (101) Laurent, N.; Lafon, D.; Dumoulin, F.; Boullanger, P.; Mackenzie, G.; Kouwer, P. H. J.; Goodby, J. W. J. Am. Chem. Soc. 2003, 125, 15499-15506.
    (102) Sung, C.-H.; Kung, L.-R.; Hsu, C.-S.; Lin, T.-F.; Ho, R.-M. Angew. Chem. Int. Ed. manuscript in revised. All the synthetic works were done by Sung’s Ph.D. program, and we thank for Prof. Hsu kindly promotion of our cooperation study.
    (103) Ho, R.-M.; Ke, K.-Z.; Chen, M. Macromolecules 2000, 33, 7529-7537.
    (104) Schultz, J. M.; Kinloch, D. R. Polymer 1969, 10, 271-278.
    (105) Bassett, D. C.; Hodge, A. M. Polymer 1978, 19, 469-472.
    (106) Bassett, D. C.; Hodge, A. M. Proc, R. Soc. London, Ser. A 1981, 377, 61.
    (107) Bassett, D. C.; Vaughan, A. S. Polymer 1985, 26, 717-725.

    (108) Bassett, D. C.; Olley, R. H.; Al-Raheil, A. M. Polymer 1988, 29, 1539-1543.
    (109) Geil, P. H. in Polymer Single Crystals; Mark, H. F., Immergut, E. H., Eds.; John Wiley & Sons: New York (1963).
    (110) Price, F. P. J. Polym. Sci. 1959, 39, 139-150.
    (111) Keller, A. J. Polym. Sci. 1959, 39, 151-173.
    (112) Fujiwara, Y. J. Appl. Polym. Sci. 1960, 4, 10.
    (113) Keller, A. J. Polym. Sci. 1955, 17, 351.
    (114) Keith, H. D.; Padden, F. J., Jr. J. Polym. Sci. 1959, 39, 101-122.
    (115) Keith, H. D.; Padden, F. J., Jr. J. Polym. Sci. 1959, 39, 123-138.
    (116) Keith, H. D.; Padden, F. J., Jr. Polymer 1984, 25, 28.
    (117) Keller, J. J. Polym. Sci. 1955, 17, 291-307.
    (118) Hoffman, J. D.; Lauritzen, J. I. J. Res. Natl. Bur. Stand. 1961, 65A, 297.
    (119) Lustiger, A.; Lotz, B.; Duff, T. S. J. Polym. Sci. Polym. Phys. Ed. 1989, 27, 561-579.
    (120) Singfield, K. L.; Klass, J. M.; Brown, G. R. Macromolecules 1995, 28, 8006.
    (121) Lotz, B.; Cheng, S. Z. D. Polymer 2005, 46, 577-610.
    (122) Pisula, W.; Kastler, M.; Wasserfallen, D.; Pakula, T.; Mullen, K. J. Am. Chem. Soc. 2004, 126, 8074-8075 and references therein.
    (123) Clayden, J.; Lund, A.; Vallverdu´, L.; Helliwell, M. Nature 2004, 431, 966-971.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE