研究生: |
黃郁恬 |
---|---|
論文名稱: |
以週期性區域反轉鈮酸鋰質子交換波導差頻產生同調兆赫波 Coherent Thz Wave Generated by Difference Frequency Generation in APE-PPLN Waveguide |
指導教授: | 楊尚達 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 28 |
中文關鍵詞: | 兆赫波 、週期性反轉鈮酸鋰 、質子交換光波導 、非線性光學 、差頻轉換 |
外文關鍵詞: | Terahertz, PPLN, APE waveguide, nonlinear optics, Difference frequency generation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,兆赫波長光源的應用及產生不論在學術界或是產業界都引起了相當大的注目與關切。其波段包含了由部分毫米波段0.1 THz到遠紅外區10 THz的一段電磁頻譜。目前雖然已有成熟產生兆赫波長光源的技術,但其架構及運轉經費限制了其發展性及普遍性。利用非線性光學原理可產生且有同調性的兆赫波。
本研究以非線性差頻轉換的三波混合之聯立波動方程式,來模擬兆赫波在非線性材料中的消長情形。我們利用程式計算兆赫波的最大轉換效率及其發生時的作用距離(最佳作用距離),其中包含:(1)兆赫波對不同強度的入射幫浦波之最大轉換效率及最佳作用距離,(2)在固定總入射強度下,兆赫波對不同幫浦波與訊號波比值之最大轉換效率及最佳作用距離。實驗部分利用週期性區域反轉鈮酸鋰質子交換波導來產生同調性的兆赫波。最後探討無法量到有意義之兆赫波訊號的原因。
THz radiation has been extensively explored in recent years due to the great potential in a variety of applications. The THz frequency is typically defined in the range of 100 GHz to 10 THz within the electromagnetic spectrum. The development of THz source is limited by the high of configuration and operation. In this work, we intend to utilize the nonlinear optical approach to generate coherent THz wave.
In this thesis, we simulated the evolution of THz wave in nonlinear crystal by using three coupled wave equations for difference frequency generation (DFG). We analyzed the dependence of THz generation on pump and signal intensities and pump-to-signal intensity ratio. In our simulations, different input intensities or pump-to-signal ratio correspond to different conversion efficiencies and optimal interaction distances. In our experiment, we fabricated an annealed proton exchange-periodic poled LiNbO3 (APE-PPLN) waveguide as the nonlinear conversion crystal. Although there is no measurable THz signal, we analyzed the problems of failure, and provided some solutions in the end.
[1] Shyh-Shii Pai, Pulsed Tera-hertz radiation from femto-second laser excited superconductive YBa2Cu3O7-δ antenna, Ph. D thesis of Department of Physics, National Tsinghua University, (2005).
[2] B. Ferguson, and X. Zhang, “Materials for terahertz science and technology,” Nature materials, 1, pp. 26-33 (2002).
[3] M. Tonouchi, “Cutting-edge terahertz technology,” Nature photonics, 1, pp. 97-105 (2007).
[4] G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum., 73, pp. 1715-1719 (2002).
[5] N. Katzenellenbogen, and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett., 58, pp. 222-224 (1991).
[6] A. Bonvaler, M. Joffre, J.-L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett., 67, pp. 2907-2909 (1995).
[7] R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature, 417, pp. 156 (2002).
[8] T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward Terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express, 16, pp. 6471-6478 (2008).
[9] M. Yamada, N. Nada, M. Saitoh, K. Watanabe, “First-order quasi-phased matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett., 62, pp. 435-436 (1993).
[10] J. L. Jackel, C. E. Rice, J. K. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett., 41, pp. 607-608 (1982).
[11] J. Shikata, M. Sato, T. Taniuchi, and H. Ito, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett., 24, pp. 202-204 (1999).
[12] S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” Stanford Univ., Stanford, CA, Microwave Lab. Rep. 1851, 1970.
[13] Y. C. Huang, Principles of Nonlinear Optics, National Tsinghua Univ. (2002).
[14] E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1991)
[15] Guo-Chun Huang, THz parametric generation from single-mode PPLN waveguide, Master thesis of Department of Electrical Engineering, National Tsinghua University, (2004).
[16] Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys., 69, pp.3372 (1991).
[17] Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO3 ribbon waveguide for efficient difference-frequency generation of terahertz wave in the collinear configuration,” Opt. Express, 15, pp. 14783 (2007).
[18] Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitted continuous- wave terahertz radiation using periodically poled lithium niobate,” Electron. Lett., 41, No. 12 (2005).