研究生: |
林晉南 Lin, Chin Nan |
---|---|
論文名稱: |
細胞凋亡在斑馬魚先天免疫和後天免疫上扮演的角色:藉由系統生物學的方法 The role of apoptosis on innate and adaptive immunity for zebrafish: a systems biology approach |
指導教授: |
林澤
Lin, Che |
口試委員: |
莊永仁
Chuang, Yung Jen 陳博現 Chen, Bor Sen 黃宣誠 Huang, Hsuan Cheng 阮雪芬 Juan, Hsueh Fen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 38 |
中文關鍵詞: | 先天免疫 、後天免疫 、斑馬魚 、白色念珠菌 、感染 |
外文關鍵詞: | innate immunity, adaptive immunity, zebrafish, C. albicans, infection |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
免疫系統是任何生物中最重要的系統之一。由免疫系統所引起的免疫反應保護了生物免於外來病原體例如:寄生蟲、細菌和病毒所帶來的威脅和有害物質。對於人類和許多脊椎動物來說,複雜的免疫系統基本上能夠分成兩個主要的子系統:先天免疫系統和後天免疫系統。在這篇研究中,藉由斑馬魚在白色念珠菌的初次感染和二次感染之時間序列微陣列數據,我們分別建立了在初次感染和二次感染下的斑馬魚蛋白質調控網路。由分析每個網路中的節點蛋白質和比較兩個網路中有顯著連線數差異的蛋白質,我們辨識出細胞凋亡程序是重要的功能性模組,並且在初次感染中,細胞凋亡是被促進的,而在二次感染中,細胞凋亡是被抑制的。由這些發現,我們推論出由病原體所引起的細胞凋亡在初次感染中是相對活躍的,因為在初次感染下,斑馬魚引起的免疫反應並不夠有效率。然而,由宿主引起的細胞凋亡,免疫記憶性使得宿主免疫系統在二次感染中能夠去針對病原體作更準確的反應。因此,細胞凋亡在初次感染中是促進的,但在二次感染中是被抑制的。
我們的分析能夠幫助更進一步的了解有關於細胞凋亡在斑馬魚先天免疫和後天免疫中扮演的角色。我們相信這些觀點能夠使得在對抗傳染病這場永不止息的戰爭中,在提供治療和藥物設計上有更大的進展。
Immune system is one of the most important biological systems in every living organism. The defensive mechanisms incurred by the immune system protect the organism from potential threats or the harmful substances caused by the foreign pathogens such as parasites, bacteria and virus. For human and many vertebrates, the complicated immune system can basically be categorized into two main subsystems: the innate and adaptive immune system. In this study, based on the time-course microarray data of zebrafish in its primary and secondary infection by C. albicans, we constructed two zebrafish intracellular PPI networks for the primary and secondary infection, respectively. By inspecting the hub proteins of each network and by comparing the significant changes of the number of linkages between the two constructed PPI networks, we identified the process of apoptosis as one of the main functional modules that is activated for the primary infection and inhibited for the secondary infection. Based on our findings, we postulated that pathogen-induced apoptosis is relatively more active during primary infection since immunity responses triggered by zebrafish under primary infection are not efficient enough. For host-induced apoptosis, however, the immunological memory enables the host immune system to response to the pathogen more precisely during secondary infection. Hence, apoptosis is activated during primary infection but inhibited during secondary infection. Our in silico analyses help pave the foundation for further investigation on the interesting roles played by apoptosis on innate and adaptive immunity for zebrafish. We believe that such insights could lead to therapeutic advances and drug design for the never-ending battle against infectious diseases.
Reference
1. Medzhitov R, Janeway CA, Jr. (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9: 4-9.
2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783-801.
3. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4: 35-44.
4. Meeker ND, Trede NS (2008) Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 32: 745-757.
5. Sullivan C, Kim CH (2008) Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol 25: 341-350.
6. Leroy O, Gangneux JP, Montravers P, Mira JP, Gouin F, et al. (2009) Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005-2006). Crit Care Med 37: 1612-1618.
7. Mavor AL, Thewes S, Hube B (2005) Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets 6: 863-874.
8. Opferman JT, Korsmeyer SJ (2003) Apoptosis in the development and maintenance of the immune system. Nat Immunol 4: 410-415.
9. Navarre WW, Zychlinsky A (2000) Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell Microbiol 2: 265-273.
10. Gao LY, Kwaik YA (2000) The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol 8: 306-313.
11. Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sanada T, et al. (2011) Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol 195: 931-942.
12. Zychlinsky A, Sansonetti P (1997) Perspectives series: host/pathogen interactions. Apoptosis in bacterial pathogenesis. J Clin Invest 100: 493-495.
13. Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96: 41-101.
14. Hershko AY, Rivera J (2010) Mast cell and T cell communication; amplification and control of adaptive immunity. Immunol Lett 128: 98-104.
15. Kloetzel PM (2004) The proteasome and MHC class I antigen processing. Biochim Biophys Acta 1695: 225-233.
16. Gao Z, Shao Y, Jiang X (2005) Essential roles of the Bcl-2 family of proteins in caspase-2-induced apoptosis. J Biol Chem 280: 38271-38275.
17. Singh CR, Bakhru P, Khan A, Li QB, Jagannath C (2011) Cutting edge: Nicastrin and related components of gamma-secretase generate a peptide epitope facilitating immune recognition of intracellular mycobacteria, through MHC class II-dependent priming of T cells. J Immunol 187: 5495-5499.
18. Luisi S, Florio P, Reis FM, Petraglia F (2001) Expression and secretion of activin A: possible physiological and clinical implications. Eur J Endocrinol 145: 225-236.
19. Malaviya R, Abraham SN (2001) Mast cell modulation of immune responses to bacteria. Immunol Rev 179: 16-24.
20. Ogawa K, Funaba M, Tsujimoto M (2008) A dual role of activin A in regulating immunoglobulin production of B cells. J Leukoc Biol 83: 1451-1458.
21. Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, et al. (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19: 4310-4322.
22. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C (2010) Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun 2: 238-247.
23. Nishikawa M, Takemoto S, Takakura Y (2008) Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int J Pharm 354: 23-27.
24. Funaba M, Ikeda T, Ogawa K, Abe M (2003) Calcium-regulated expression of activin A in RBL-2H3 mast cells. Cell Signal 15: 605-613.
25. Galli SJ (1993) New Concepts about the Mast Cell. New England Journal of Medicine 328: 257-265.
26. Marshall JS, Jawdat DM (2004) Mast cells in innate immunity. J Allergy Clin Immunol 114: 21-27.
27. Hoebe. K, Janssen. E, Beutler. B (2004) The interface between innate and adaptive immunity.
28. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11: 441-469.
29. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, et al. (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89: 239-250.
30. Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, et al. (2010) Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci U S A 107: 19985-19990.
31. Wang J, Maldonado MA (2006) The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol 3: 255-261.
32. Elliott MR, Ravichandran KS (2010) Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189: 1059-1070.
33. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226: 1097-1099.
34. Cleary ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47: 19-28.
35. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, et al. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129-1132.
36. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15: 269-290.
37. Schuster N, Krieglstein K (2002) Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 307: 1-14.
38. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, et al. (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89: 1165-1173.
39. Carl-Henrik Heldin KM, Peter ten Dijke TGF-b signalling from cell membrane to nucleus through SMAD proteins. nature
40. Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223: 163-170.
41. Keane J, Balcewicz-Sablinska MK, Remold HG, Chupp GL, Meek BB, et al. (1997) Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 65: 298-304.
42. Moore KJ, Matlashewski G (1994) Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. J Immunol 152: 2930-2937.
43. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, et al. (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34: D535-539.
44. Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, et al. (2010) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38: D196-203.
45. Akaike H (1974) A new look at the statistical model identification. Automatic Control, IEEE Transactions on 19: 716-723.