簡易檢索 / 詳目顯示

研究生: 吳怜慧
論文名稱: 影響二矽化鎳成長之外界因素
The Influence of External Factors on the Growth of Ni Disilicide
指導教授: 蔡哲正
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 141
中文關鍵詞: 反應式沉積磊晶表面乾靜度固相磊晶二矽化鎳鍺薄膜層
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis mainly discusses some factors that have the influence on the formation of the nickel disilicide. The factors investigated here include (1) the surface cleanness, (2) the very thin Ge layer, and (3) the Ge overlayer. The abstract of the individual topic is listed in sequence.
    The amount of the oxide on the surface is controlled by the surface cleaning temperature or by flowing condition of the oxygen gas on the cleaned surface. Here, three types of structures of NiSi2 phase, which include the inverted-hut structure containing only the A-type NiSi2/Si interfaces, the parallel-epipedal structure, and the nanowire structure containing the B-type NiSi2/Si interfaces, can be observed. The formation of these three kinds of structures is affected by the surface thermal cleaning process, the growth temperature, the deposition rate of Ni, the deposited thickness of Ni, the amount of oxide on the surface, and the post-annealing process. As the inverted-hut structures nucleate first and continue to grow until reaching areas with the oxide, the B-type interfaces related structures form. The appearance of the B-type interfaces related structure accompanies the shrinkage of the aspect ratio in the inverted-hut structure. Atomic model is proposed to explain that the existence of the oxygen on the metastable adsorption site of the Si surface can lead to the formation of B-type NiSi2(111)/Si(111) interface.
    The effect of a very thin Ge layer on the growth of the epitaxial NiSi2 islands using reactive deposition epitaxy is investigated. It was found that the prescence of a 0.2 nm-thick Ge on Si(001) substrate increases the surface diffusion length of Ni adatoms. Therefore, the density and the size of NiSi2 islands is lower and greater, respectively. Compared with the NiSi2 islands grown on the Si without the thin Ge layer, the aspect ratio of the NiSi2 islands, formed on Si substrate with the 0.2 nm Ge interlayer, is distributed close to 1. In addition, it was observed that the NiGe phase forms near the surface and surrounds the top part of silicide.
    The effects of Ge overlayers on the reaction of one monolayer of Ni on Si(001) substrate using solid state reaction were investigated. After the deposition of Ni and Ge, the samples were then ex-situ annealed at 400-800 oC. The reaction process began with dissolution of the Ni atoms into the amorphous Ge layer. Then, solid phase epitaxy of the amorphous layer was observed. The Ni atoms were expelled from the crystallized region and redistributed in the amorphous region. Until the concentration of Ni in the amorphous Ge layer exceeded the solubility limit, the Ni atoms diffused through the crystallized Ge layer and reacted with the substrate to form NiSi2. The NiSi2 phase formation was kinetically controlled by the rate of solid phase epitaxy of the Ge overlayers for the reaction system.


    Content………………………………………………………………I Abstract…………………………………………………………… III List of Table………………………………………………………VII Figure Captures……………………………………………………VIII List of Abbreviations……………………………………………XVI Chapter 1 Introduction……………………………………………1 1.1 General Background………………………………………1 1.1.1 Application of Nickel Silicides………………1 1.1.2 Phase Transformation of Nickel Silicides… 1 1.1.3 Initial Growth of NiSi2 Epitaxy………………2 1.2 Nickel Disilicide Grown on Si Substrates…………2 1.2.1 NiSi2 on Si(111) …………………………………2 1.2.2 NiSi2 on Si(001) …………………………………3 1.3 Control of the Formation of Transition-Metal Disilicides……………………………………………… 4 1.3.1 Endotaxy…………………………………………… 4 1.3.2 Oxide and Nitride Mediated Epitaxy………… 4 1.3.3 Presence of Element Ge………………………… 5 1.4 Organization of the Dissertation………………… 5 Chapter 2 Experimental Procedures and Instruments………11 2.1 Wafer Cleaning………………………………………… 11 2.2 The Deposition of the Thin Film……………………11 2.2.1 UHV Electron-Beam Evaporation System………11 2.2.2 UHV Ion Beam Sputter System………………… 12 2.3 Annealing System………………… ……………………12 2.4 Sample Preparation for Transmission Electron Microscope Observation……………………………… 12 2.4.1 Plane-View Specimen Preparation…………… 12 2.4.2 Cross-Sectional Specimen Preparation………13 2.5 Characterization………………………………………14 2.5.1 Scanning Electron Microscope (SEM)…………14 2.5.2 Transmission Electron Microscope (TEM)……14 Chapter 3 Surface Cleanness Dependence of the Interfacial Orientation of Endotaxial NiSi2 on Si(001)… 20 3.1 Introduction……………………………………………20 3.2 Experiment………………………………………………22 3.3 Results and Discussion………………………………23 Part I. Surface Cleaning Temperature and Growth Temperature Effect…………………………23 Part II. Change the Deposition Rate………………33 Part III.Amount of the Oxide Controlled by O2 Gas Flow ………………………………………… 48 Part IV. The Effect of the Long-Time Annealing Process……………………………………… 56 Part V. The Growth Model of the B-type Interface …………………………………………………65 3.4 Conclusions…………………………………………… 91 Chapter 4 Eptiaxial A-type NiSi2 Isalnds Grown on the 0.2- nm Ge/Si(001) by Reactive Deposition Epitaxy 93 4.1 Introduction……………………………………………93 4.2 Experiment………………………………………………93 4.3 Results and Discussion………………………………94 Part I. The Influence of the Epitaxial Ge Interlayer…………………………………… 94 Part II.The Growth of NiSi2 Islands on the 0.2 nm-Ge/Si Substrate………………………… 107 4.4 Conclusions…………………………………………… 112 Chapter 5 Effects of Ge Overlayers on the Formation of Nickel Disilicide……………………………………113 5.1 Introduction……………………………………………113 5.2 Experiment………………………………………………114 5.3 Results and Discussion………………………………115 5.4 Conclusions…………………………………………… 122 Chapter 6 Conclusions……………………………………………128 6.1 Surface Cleanness Dependence of the Interfacial Orientation of Endotaxial NiSi2 on Si(001)……128 6.2 Epitaxial A-type NiSi2 Islands Grown on the 0.2 nm-Ge/Si(001) by Reactive Deposition Epitaxy…129 6.3 Effects of Ge Overlayers on the Formation of Nickel Disilicide…………………………………… 129 Reference……………………………………………………………130 Publication List………………………………………………… 141

    [1.1] E. C. Cahoon, C. M. Comrie, and R. Pretorius, “Stability of NiSi2 and CoSi2 in contact with their free metal”, Appl. Phys. Lett., 44, pp. 511-513 (1984).

    [1.2] H. Lim and R. E. Allen, “Theory of Si/NiSi2 interface states”, J. Vac. Sci. Technol. B, 3, pp. 1221-1223 (1985).

    [1.3] R. W. Fathauer, B. D. Hunt, L. J. Schowalter, M. Okamoto, and S. Hashimoto, “Heteroepitaxy of insulator/ metal/ silicon structures: CaF2/ NiSi2/ Si(111) and CaF2/ CoSi2/ Si(111)”, Appl. Phys. Lett., 49, pp. 64-66 (1986).

    [1.4] D. J. Coe and H. Rhoderick, “Silicide Formation in Ni-Si Schottky Barrier Deodes”, J. Phys. D, 9, pp. 965-972 (1976).

    [1.5] R. T. Tung, S. Nakahara, and T. Boone, “Growth of single crystal NiSi2 layers on Si(110)”, Appl. Phys. Lett., 46, pp. 895-897 (1985).

    [1.6] W. J. Chen, F. R. Chen, and L. J. Chen, “Atomic structure of twin boundary in NiSi2 thin films on (001)Si”, Appl. Phys. Lett., 60, pp. 2201-2203 (1992).

    [1.7] V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A. Lauwers, K. Maex, and J. Van Landuyt, “In-situ transmission electron microscopy study of Ni silicide phases formed on (001) Si active lines”, J. Appl. Phys., 90, pp. 167-174 (2001).

    [1.8] C. J. Choi, S. Y. Chang, S. J. Lee, Y. W. Ok, and T. Y. Seong, “Thickness effect of a Ge interlayer on the formation of nickel silicides”, J. Electrochem. Soc., 154, pp. H759-H763 (2007).

    [1.9] R. Pretorius, C. C. Theron, A. Vantomme, and J. W. Mayer, “Compound phase formation in thin film structures”, Critical Reviews in Solid State and Material Science, 24, pp. 1-62 (1999)

    [1.10] L. J. Chen, and C. Y. Hou, “On the formation of nickel silicides by thermal annealing”, Chin. J. Mater. Sci., 15, pp. 1-11 (1983).

    [1.11] I. Ono, M. Yoshimura, and K. Ueda, “Atomic study of nickel silicide structures on Si(100) by tunneling microscopy”, J. Vac. Sci. Technol. B, 16, pp. 2947-2951 (1992).

    [1.12] M. Y. Lee and P. A. Bennett, “Bulk versus surface transport of nickel and cobalt on silicon”, Phys. Rev. Lett., 75, pp. 4460-4463 (1995).

    [1.13] J. M. Poate, K. N. Tu, and J. W. Mayer, “Thin film interdiffusion and reactions”, Willey, New York, (1978).

    [1.14] R. T. Tung, “Schottky-barrier formation at single-crystal metal-semiconductor interfaces”, Phys. Rev. Lett., 52, pp. 461-464 (1984).

    [1.15] R. T. Tung, J. M. Gibson, J. M. Poate, “Formation of ultrathin single-crystal silicide films on Si: Surface and interfacial stabilization of Si-NiSi2 epitaxial structures”, Phys. Rev. Lett., 50, pp. 429-432 (1983).

    [1.16] R. T. Tung and F. Schrey, “Growth of epitaxial NiSi2 on Si(111) at room temperature”, Appl. Phys. Lett., 55, pp. 256-258 (1989).

    [1.17] J. M. Gibson and J. L. Batstone, “In-situ transmission electron microscopy of NiSi2 formation by molecular beam epitaxy”, Surf. Sci., 208, pp. 317-350 (1989).

    [1.18] J. P. Sillivan, R. T. Tung, and F. Schery, “Control of interfacial morphology: NiSi2/Si(100)”, J. Appl. Phys., 72, pp.478-489 (1992).

    [1.19] K. C. R. Chiu, J. M. Poate, J. E. Rowe, T. T. Sheng, and A. G. Cullis, “Interface and surface structure of epitaxial NiSi2 films”, Appl. Phys. Lett., 38, pp. 988-990 (1981).

    [1.20] J. L. Batstone, J. M. Gibson, R. T. Tung, and A. F. J. Levi, “Coreless defects and the continuity of epitaxial NiSi/Si(100) thin films”, Appl. Phys. Lett., 52, pp. 828-830 (1988).

    [1.21] T. George and R. W. Fathauer, “Endotaxial growth of CoSi2 within (111) oriented Si in a molecular beam epitaxy system”, Appl. Phys. Lett., 59, pp. 3249-3251 (1991).

    [1.22] R. W. Fathauer, T. George, and W. T. Pike, “Co diffusion and growth of buried single-crystal CoSi2 in Si (111) by endotaxy”, J. Appl. Phys., 72, pp. 1874-1878 (1992)

    [1.23] M. W. Kleinschmit, M. Yeadon, and J. M. Gibson, “Nucleation of single-crystal CoSi2 with oxide-mediated epitaxy”, Appl. Phys. Lett., 75, pp. 3288-3290 (1999).

    [1.24] R. K. K. Chong, M. Yeadon, W. K. Choi, E. A. Stach, and C. B. Boothroyd, “Nitride-mediated epitaxy of CoSi2 on Si(001)”, Appl. Phys. Lett., 82, pp. 1833-1835 (2003).

    [1.25] R. T. Tung, “Oxide mediated epitaxy of CoSi2 on silicon”, Appl. Phys. Lett., 68, pp. 3461-3463 (1996).

    [1.26] A. Ouerghi, J. Penuelas, C. Andreazza-Vignolle, P. Andreazza, N. Bouet, and H. Estrade-Szwarckopf, “Chemical and structural aspects of CoPt silicide nanostructures grown on Si(100)”, J. Appl. Phys., 100, pp. 124310-1 - 124310-7 (2006).

    [1.27] J. S. Luo, W. T. Lin, C. Y. Chang, and W. C. Tsai, “Pulsed KrF laser annealing of Ni/Si0.76Ge0.24 films”, J. Appl. Phys., 82, pp. 3621-3623 (1997).

    [1.28] J. S. Luo, W. T. Lin, C. Y. Chang, P. S. Shin, and F. M. Pan, “Annealing effects on the interfacial reactions of Ni on Si0.76Ge0.24 and Si1-x-yGexCy”, J. Vac. Sci. Technol. A, 18, pp. 143-148 (2000).

    [1.29] F. R. Deboer, R. Boom, W. C. Mattens, A. R. Miedema, and A. K. Niessen, “Cohesion in metal: Transition metal alloy”, North Holland, Amsterdam, (1988).

    [1.30] R. D. Thompson, K. N. Tu, J. Angillelo, S. Delage, and S. S. Lyer, “Interfacial reaction between Ni and MBE-grown SiGe Alloy”, J. Electrochem. Soc.: Solid-State Science and Technology, 135, pp. 3161-3163 (1988).

    [3.1] J. A. Kubby and W. J. Greene, “Electron interferometry at a metal-semiconductor interface”, Phys. Rev. Lett., 68, pp. 329-332 (1992).

    [3.2] R. T. Tung and F. Schrey, “Growth of epitaxial NiSi2 on Si(111) at room temperature”, Appl. Phys. Lett., 55, pp. 256-258 (1989).

    [3.3] A. Kikuchi, “Atomic-configuration-dependent energy at epitaxial silicide-silicon interfaces”, Jpn. J. Appl. Phys., Part 1, 37, pp. 653-656 (1998).

    [3.4] R. T. Tung, J. M. Gibson, and J. M. Poate, “Formation of ultrathin single-crystal silicide films on Si: Surface and interfacial stabilization of Si-NiSi2 epitaxial structures”, Phys. Rev. Lett., 50, pp. 429-432 (1983).

    [3.5] R. T. Tung, “Growth of ultrathin single-crystal NiSi2 layers on Si(111)”, J. Vac. Sci. Technol. A, 5, pp. 1840-1844 (1987).

    [3.6] D. R. Hamann and L. F. Mattheiss, “Energetics of silicide interface formation”, Phys. Rev. Lett., 54, pp. 2517-2520 (1985).

    [3.7] F. Comin, J. E. Rowe, and P. H. Citrin, “Structure and nucleation mechanism of nickel silicide on Si(111) derived from surface extended-X-ray-adsorption fine structure”, Phys. Rev. Lett., 51, pp. 2402-2405 (1983).

    [3.8] J. M. Gibson, J. L. Batstone , R. T. Tung, and F. C. Unterwald, “Origin of A- or B-type NiSi2 determined by in situ transmission electron microscopy and diffraction during growth”, Phys. Rev. Lett., 60, pp. 1158-1161 (1988).

    [3.9] P. A. Bennett, M. Y. Lee, P. Yang, R. Schuster, P. J. Eng, and I. K. Robinson, “Template structure at the silicon/amorphous-silicide interface”, Phys. Rev. Lett., 75, pp. 2726-2729 (1995).

    [3.10] S .Y. Chen, and L. J. Chen, “Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy”, Thin Solid Films, 508, pp. 222-225 (2006).

    [3.11] S. Y. Chen and L. J. Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001) Si”, Appl. Phys. Lett., 87, pp. 253111-1 - 253111-3 (2005).

    [3.12] Z. He, D. J. Smith, and P. A. Bennett, “Endotaxial silicide nanowires”, Phys. Rev. Lett., 93, pp. 256102-1 - 256102-4 (2004).

    [3.13] S. H. Brongersma, M. R. Castell, D. D. Perovic, and M. Zinke Allmang, “Stress-induced shape transition of CoSi2 clusters on Si(100)”, Phys. Rev. Lett., 80, pp. 3795-3798 (1998).

    [3.14] K. Sekar, G. Kuri, P. V. Satyam, B. Sundaravel, D. P. Mahapatra, and B. N. Dev, “Shape transition in the epitaxial growth of gold silicide in Au thin films on Si(111)”, Phys. Rev. B, 51, pp. 14330-14336 (1995).

    [3.15] J. Tersoff and R. M. Tromp, “Shape transition in growth of strained islands: Spontaneous formation of quantum wires”, Phys. Rev. Lett., 70, pp. 2782-2785 (1993).

    [3.16] Y. C. Chu and C. J. Tsai, “Shape transition between symmetric and asymmetric structures in epitaxial three-dimensional strained islands”, Appl. Phys. Lett., 92, pp. 031905-1 - 031905-3 (2008).

    [3.17] G. Akinci, T. R. Ohno and E. D. Williams, “NiSi2 on Si(111) I. Effects of substrate cleaning procedure and reconstruction”, Surface Science, 193, pp. 534-548 (1988).

    [3.18] C. W. Lim, I. Petrov, and J. E. Greene, “Epitaxial growth of CoSi2 on Si(001) by reactive deposition epitaxy: Island growth and coalescence”, Thin Solid Films, 515, pp. 1340-1348 (2006).

    [3.19] A. Ouerghi, J. Penuelas, C. Andreazza-Vignolle, P. Andreazza, N. Bouet, and H. Estrade-Szwarckopf, “Chemical and structural aspects of CoPt silicide nanostructures grown on Si(100)”, J. Appl. Phys., 100, pp. 124310-1 - 124310-7 (2006).

    [3.20] J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er and S. Redkar, “Formation of cobalt silicide spikes in 0.18 μm complementary metal oxide semiconductor process”, Appl. Phys. Lett., 78, pp. 3091-3093 (2001).

    [3.21] P. J. van den Hoek, W. Ravenek, and E. J. Baerends, “MSi2/Si(111) (M=Co,Ni) interface chemical bond”, Phys. Rev. Lett., 60, pp. 1743-1746 (1988).

    [3.22] D. E. Jesson, G. Chen, K. M. Chen, and S. J. Pennycook, “Self-limiting growth of strained faceted islands”, Phys. Rev. Lett., 80, pp. 5156-5159 (1998).

    [3.23] D. Hesse and R. Mattheis, “The growth behaviour of epitaxial NiSi¬2 islands of A- and B-types during the reaction of nickel vapour with the Si(111) surface”, Phys. Stat. Sol. (a), 116, pp. 67-80 (1989).

    [3.24] K. J. Kim, J. W. Kim, M. S. Yang, and J. H. Shin, “Oxidation of Si during the growth of SiOx by ion-beam sputter deposition: In situ x-ray photoelectron spectroscopy as a function of oxygen partial pressure and deposition temperature”, Phys. Rev. B, 74, pp. 153305-1 - 153305-4 (2006).

    [3.25] C. W. T. Bulle-Lieuwma, A. H. van Ommen, J. Hornstra, and C. N. M. Aussems, “Observation and analysis of epitaxial growth of CoSi2 on (100)Si”, J. Appl. Phys., 72, pp. 2221-2224 (1992).

    [3.26] F. C. Tompkins, “Chemisorption of Gases on Metals”, Academic Press, London, (1978), pp. 20.

    [3.27] T. Uchiyama, M. Tsukada, “Atomic and electronic structures of oxygen-adsorbed Si(001) surfaces”, Phys. Rev. B, 53, pp. 7917-7922 (1996).
    [3.28] T. Uchiyama, M. Tsukada, “Scanning-tunneling-microscopy images of oxygen adsorption on the Si(001) surface”, Phys. Rev. B, 55, pp. 9356-9359 (1997).
    [3.29] H. Ikegami, K. Ohmori, H. Ikeda, H. Iwano, S. Zaima, and Y. Yasuda, “Oxide formation on Si(100)- 2×1 surfaces studied by scanning tunneling microscopy/ scanning tunneling spectroscopy”, Jpn. J. Appl. Phys., Part 1, 35, pp.1593-1597 (1996).

    [3.30] Y. Miyamoto, A. Oshiyama, and A. Ishitani, “Metastable atomic configurations for oxygen adsorption on Si(100) surfaces”, Solid State Commun., 74, pp. 343-346 (1990).

    [3.31] Y. Miyamoto and A. Oshiyama, “Atomic and electronic structures of oxygen on Si(100) surfaces: Metastable adsorption sites”, Phys. Rev. B, 41, pp. 12680-12686 (1990).

    [4.1] C. Roland and G. H. Gilmer, “Epitaxy on surfaces vicinal to Si(001). I. Diffusion of silicon adatoms over the terraces”, Phys. Rev. B, 46, pp. 13428-13436 (1992).

    [4.2] R. Stumpf and M. Scheffler, “Theory of self-diffusion at and growth of Al(111)”, Phys. Rev. Lett., 72, pp. 254-257 (1994).

    [4.3] C. Ratsch, P. Ruggerone, and M. Scheffler, “Surface Diffusion: Atomistic and Collective Processes”, edited M. C. Tringides, New York, (1997).

    [4.4] J. A. Meyer, P. Schmid, and R. J. Behm, “Effect of layer-dependent adatom mobilities in heteroepitaxial metal film growth: Ni/Ru(0001)”, Phys. Rev. Lett., 74, pp. 3864-3867 (1995).

    [4.5] H. Brune, K. Bromann, H. Röder, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, and J. Nørskov, “ Effect of strain on surface diffusion and nucleation”, Phys. Rev. B, 52, pp. R14380-R14383 (1995).

    [4.6] M. Schroeder and D. E. Wolf, “Diffusion on strained surfaces”, Surface Science, 375, pp. 129-140 (1997).

    [4.7] C. Ratsch, A. P. Seitsonen, and M. Scheffler, “Strain dependence of surface diffusion: Ag on Ag(111) and Pt(111)”, Phys. Rev. B, 55, pp. 6750-6753 (1997).

    [4.8] K. A. Fichthorn and M. Scheffler, “Island nucleation in thin-film epitaxy: A first-principles investigation”, Phys. Rev. Lett., 84, pp. 5371-5374 (2000).

    [4.9] K. Park, B. H. Lee, D. Lee, D. H. Ko, K. H. Kwak, C. W. Yang, and H. Kim, “A study on the thermal stabilities of the NiGe and Ni1-xTaxGe system”, J. Electrochem. Soc., 154, pp. H557-560 (2007).

    [5.1] K. C. Lu, W. W. Wu, H. W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen, and K. N. Tu, “In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction”, Nano Lett., 7, pp. 2389-2394 (2007).

    [5.2] S. Y. Chen and L. J. Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001) Si”, Appl. Phys. Lett., 87, pp. 253111-1 - 253111-3 (2005).

    [5.3] S. L. Chiu, Y. C. Chu, C. J. Tsai, and H. Y. Lee, “Effects of Ti interlayer on Ni/Si reaction systems”, J. Electrochem. Soc., 151, pp. G452-G455 (2004).

    [5.4] C. J. Tsai and K. H. Yu, “Stress evolution during isochronal annealing of Ni/Si system”, Thin Solid Films, 350, pp. 91-95 (1999).

    [5.5] E. M. Schaller, B. I. Boyanov, S. English, and R. J. Nemanich, “Role of the substrate strain in the sheet resistance stability of NiSi deposited on Si(100)”, J. Appl. Phys., 85, pp. 3614-3618 (1999).

    [5.6] R. T. Tung, A. F. J. Levi., and J. M. Gibson, “Epitaxial metal-semiconductor structures and their properties”, J. Vac. Sci. Technol. B, 4, pp. 1435-1443 (1986).

    [5.7] F. D’Heurle, C. S. Petrsson, L. Slot, and B. Strizker, “Diffusion in intermetallic compounds with the CaF2 structures: A marker study of the formation of NiSi2 thin films”, J. Appl. Phys., 53, pp. 5678-5681 (1982).

    [5.8] F. D’Heurle, C. S. Petrsson, J. E. E. Baglin, S. J. La Placa, and C. Y. Wong, “Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds”, J. Appl. Phys., 55, pp. 4208-4218 (1984).

    [5.9] L. J. Chen, C. M. Doland, I. W. Wu, J. J. Chu, and S. W. Liu, “Effects of implantation impurities and substrate crystallinity on the formation of NiSi2 on silicon at 200-280 oC”, J. Appl. Phys., 62, pp. 2789-2792 (1987).

    [5.10] J. Seger, S.-L. Zhang, D. Mangelinck, and H. H. Radamson, “Increased nucleation temperature of NiSi2 in the reaction of Ni thin films with SixGe1-x”, Appl. Phys. Lett., 81, pp. 1978-1980 (2002).

    [5.11] R. Nathz and M. Yeadon, “Direct observations of the mechanism of nickel silicide formation on Si(100) and Si0.75Ge0.25 substrates”, Electrochem. Solid-State Lett., 7, pp. G231- G234 (2004).

    [5.12] M. Y. Lee and P. A. Bennett, “Bulk versus surface transport of nickel and cobalt on silicon”, Phys. Rev. Lett., 75, pp. 4460-4463 (1995).

    [5.13] I. Ono, M. Yoshimura, and K. Ueda, “Atomic study of nickel silicide structures on Si(100) by tunneling microscopy”, J. Vac. Sci. Technol. B, 16, pp. 2947-2951 (1992).

    [5.14] R. Pretorius, C. C. Theron, A. Vantomme, and J. W. Mayer, “Compound phase formation in thin film structures”, Critical Reviews in Solid State and Material Science, 24, pp. 1-62 (1999)

    [5.15] R. T. Tung, J. M. Gibson, J. M. Poate, “Formation of ultrathin single-crystal silicide films on Si: Surface and interfacial stabilization of Si-NiSi2 epitaxial structures”, Phys. Rev. Lett., 50, pp. 429-432 (1983).

    [5.16] R. T. Tung, “ A novel technique for ultrathin CoSi2 layers: Oxide mediated epitaxy”, Jpn. J. Appl. Phys., Part I, 36, pp. 1650-1654 (1997).

    [5.17] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, R. A. Donaton, and K. Maex, “ CoSi2 formation in the presence of interfacial silicon oxide”, Appl. Phys. Lett., 74, pp. 2930-2932 (1999).

    [5.18] J. H. Choi, S. S. Kim, J. H. Cheon, S. J. Park, Y. D. Son, and J. Jang, “Kinetics of Ni-mediated crystallization of a-Si through a SiNx cap layer”, J. Electrochem. Soc., 151, pp. G448-G451 (2004).

    [5.19] J. P. Sullivan, R.T. Tung, and F. Schery, “Control of interfacial morphology: NiSi2/Si(100) ”, J. Appl. Phys., 72, pp. 478-489 (1992).

    [5.20] J. L. Batstone, J. M. Gibson, R. T. Tung, and A. F. J. Levi, “Coreless defects and the continuity of epitaxial NiSi/Si(100) thin films”, Appl. Phys. Lett., 52, pp. 828-830 (1988).

    [5.21] F. A. Ferri, A. R. Zanatta, and I. Chambouleyron, “Metal-induced nanocrystalline structures in Ni-containing amorphous silicon thin films”, J. Appl. Phys., 100, pp. 094311-1 - 094311-7 (2006).

    [5.22] A. Yu. Kuznetsov, B. G. Svensson, O. Nur, and L. Hultman, “Nickel distribution in crystalline and amorphous silicon during soild phase epitaxy of amorphous silicon”, J. Appl. Phys., 84, pp. 6644-6649 (1998).

    [5.23] In-Tae Bae, Manabu Ishimaru, Yoshihiko Hirotsu, and Kurt E. Sickafus, “Solid phase epitaxy of amorphous silicon carbide: Ion fluence dependence”, J. Appl. Phys., 96, pp. 1451-1457 (2004).

    [5.24] B. C. Johnson and J. C. McCallum, “Modeling the effect of hydrogen infiltration on the asymmetry in arsenic-enhanced solid phase epitaxy”, J. Appl. Phys., 96, pp. 2381-2385 (2004).

    [5.25] Q. Z. Hong, J. G. Zhu, J. W. Mayer, W. Xia, and S. S. Lau, “Solid phase epitaxy of stressed and stress-relaxed Ge-Si alloys”, J. Appl. Phys., 71, pp. 1768-1773 (1992).

    [5.26] F. H. M. Spit, D. Gupta, and K. N. Tu, “Diffusivity and solubility of Ni (63Ni) in monocrystalline Si”, Phys. Rev. B, 39, pp. 1255-1260 (1989).

    [5.27] S. Coffa, J. M. Poate, D. C. Jacobson, W. Frank, and W. Gustin, “Determination of diffusion mechanisms in amorphous silicon”, Phys. Rev. B, 45, pp. 8355-8358 (1992).

    [5.28] A. Yu. Kuznetsov and B. G. Svensson, “Nickel atomic diffusion in amorphous silicon”, Appl. Phys. Lett., 66, pp. 2229-2231 (1995).

    [5.29] A. Giese, H. Bracht, N. A. Stolwijk, and H. Mehrer, “ Diffusion of nickel and zinc in germanium”, Defect and Diffusion Forum, 143-147, pp. 1059-1064 (1997)

    [5.30] P. Kringhøj and R. G. Elliman, “Solid-phase epitaxial crystallization of strain-relaxed Si1-xGex alloy layers”, Phys. Rev. Lett., 73, pp. 858-861 (1994)

    [5.31] F. R. Deboer, R. Boom, W. C. Mattens, A. R. Miedema, and A. K. Niessen, “Cohesion in Metal: Transition Metal Alloy”, North Holland, Amsterdam, (1988).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE