簡易檢索 / 詳目顯示

研究生: 陳美玲
Mei Ling Chen
論文名稱: 振動頻率匹配之光纖干涉儀運用於飛克級之質量檢測
Vibration Frequency Matching in Fiber-based Interferometer for Femtogram Measurement
指導教授: 葉哲良
Jer-Liang Andrew Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 88
中文關鍵詞: 光纖頻率質量量測干涉儀
外文關鍵詞: fiber optics, frequency, mass measurement, interferometer
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首次提出振動頻率匹配(Vibration Frequency Matching)之光纖干涉儀作為微懸臂樑之共振頻率飄移之量測工具,乃是以光纖作為基礎架構之麥克森干涉儀,干涉儀的參考端以及樣品端之反射鏡面皆為可動,鏡面之振動頻率由壓電材料所激發,此方法可運用作為高精密度的頻率量測工具。
    本文中討論微懸臂樑尺寸設計、模擬、材料選用及製程設計討論,在厚度0.15□m、長度25□m及寬度7-5□m的單晶矽微懸臂樑,可以達到次飛克等級的質量解析度。而將微懸臂樑底部基材掏空可以提高懸臂樑品質因素,減低誤差值。
    運用本系統檢測樣品附著在微懸臂樑的共振頻率以得知樣品之質量,所測試之樣品包含口腔黏膜細胞、大腸桿菌、酵母菌、藍綠藻及前端帶有螢光的E. Coli detection probe ( oligonucleotide probe)。本系統量得口腔黏膜細胞質量為12.2ng、大腸桿菌質量為0.47ng、酵母菌質量為25pg、E. Coli detection probe質量為 575.4fg。使用VFM系統搭配微懸臂樑做質量檢測的質量解析度約在57fg。


    This thesis demonstrated a low cost cantilever-based mass sensor with high resolution for cell mass using a fiber-based interferometer system. The mass attached to the cantilever can be measured based on spring-mass theory of a cantilever beam. The quality factor of the beam used is high enough (Q~1000) that the nature frequency shift of the cantilever could be precisely characterized. The minimum mass detected is about 575.4fg and the cantilever weighs 28.6ng. The ratio of the cantilever to the minimum is about 20ppm. The mass resolution in this system is around 57fg. The mass detection is based on Vibration Frequency Matching (VFM) method used in a fiber interferometer that is proposed to measure the difference between sample and reference vibration frequency. The concept of VFM is transforming the difference of vibration frequencies to a time dependent signals. This system’s frequency resolution is 0.15 Hz at 150 kHz.

    摘要 Abstract 誌謝 圖目錄 表目錄 符號表 第一章 緒論 1.1研究動機 1.2 研究背景 1.3 研究目標 1.4 論文架構 第二章 理論分析 2.1微懸臂樑設計 2.2 麥克森干涉儀 2.3 VFM系統理論以及架設 2.4數值分析 第三章 實驗結果與討論 3.1系統架構 3.2實驗結果 3.3分析討論 第四章 結論與未來工作 參考文獻

    [1] 吳宗正, “壓電晶體生物感測器之研究與其運用,” 碩士論文, 台灣大學農化研究所, (1990).
    [2] D. A. Buttry, M. D. Ward, “Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance,” Chem Rev., 92 (1992) 1355.
    [3] 施正雄, “壓電晶體化學感測器開發及運用,” 科儀新知, 第二十一卷, 第四期 (2000) 60.
    [4] H. Kawaguchi, N. Fukasawa and A. Mizuike, “Investigation of airborne particles by inductively coupled plasma emission spectrometry calibrated with monodisperse aerosols,” Spectrochim Acta, 41B (1986) 1277.
    [5] T. Nomizu, N. Hoshino, S. Kaneco, H. Hayashi, T. Tanaka, H. Kawaguchi and K. Kitagawa, “Successive measurement of femto-gram elemental content in individual airbone partical by ICP-MS,” Analytical Science, 17 (2001) 61.
    [6] T. Bachels, R. Schakfer, “Formation enthalpies of Sn clusters: a calorimetric investigation,” Chem. Phys. Lett., 300 (1999) 177.
    [7] J. R. Barnes, R. J. Stephenson, M. E. Welland, Ch. Gerber, J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature, 372 (1994) 79.
    [8] G. Y. Chen, T. Thundat, E. A. Wachter, R. J. Warmack, “A dsorption- induced surface stress and its effects on resonance frequency of microcantilevers,” J. Appl. Phys., 77 (1995) 3618.
    [9] R. Berger, C. Gerber, H. P. Lang, J. K. Gimzewski, “Micromechanics: a toolbox for femtoscale science: towards a laboratory on a tip,” Microelectron. Eng., 35 (1997) 373.
    [10] R. Berger, E. Delamarche, H. P. Lang, Ch. Gerber, J. K. Gimzewski, E. Meyer, H. J. GuKntherodt, “Surface stress in the self-assembly of alkanethiols on gold,” Science, 276 (1997) 2021.
    [11] T. Thundat, S. L. Sharp, W. G. Fisher, R. J. Warmack, E. A.Wachter, “Micromechanical radiation dosimeter,” Appl. Phys. Lett., 66 (1995) 1563.
    [12] T. Thundat, R. J. Warmack, G. Y. Chen, D. P. Allison, “Thermal and ambient-induced deflections of scanning force microscope cantilevers,” Appl. Phys. Lett., 64 (1994) 2894.
    [13] T. Thundat, E. A. Wachter, S. L. Sharp, R. J. Warmack, “Detection of mercury vapor using resonating microcantilevers,” Appl. Phys. Lett., 66 (1995) 1695.
    [14] B. Ghodsian, J. M. Chen, M. Parameswaran, M. Syrzycki, “Towards an integrated sub-nanogram mass measurement system,” Innovative Systems in Silicon, 1996. Proceedings. , Eighth Annual IEEE International Conference, (1996) 71.
    [15] T .Mizuno, M. Takeuchi, “Mass measurement using a system containing an on-off relay with dead zone,” SICE 2002. Proceedings of the 41st SICE Annual Conference, 1 (2002) 5.
    [16] J. Tamayo, A. D. L. Humphris, A. M. Malloy, M. J. Miles, “Chemical sensor and biosensor in liquid environment based on micro-cantilevers with amplified quality factor,” Ultramicroscopy, 86 (2001) 167.
    [17] L. A. Pinnaduwage, V. Boiadjiev, J. E. Hawk and T. Thundat, “Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers,” Appl. Phys. Lett., 83, 7 (2003) 1471.
    [18] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, “Carbon nanotube quantum resistors,” Science, 280, 8 (1998) 1744.
    [19] http://www.efunda.com/designstandards/sensors/laser_doppler/laser_doppler_effect_theory.cfm.
    [20] P. Castellini1 and R. Montanini, “Automotive components vibration measurements by tracking laser Doppler vibrometry: advances in signal processing,” Meas. Sci. Technol. 13 (2002) 1266.
    [21] A. Gupta, D. Akin, and R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett., 84, 11 (2004) 112.
    [22] D. W. Carr and H. G. Craighead, “Fabrication of nanoelectromechnical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography” J. Vac. Sci Technol, B, 15, 6 (1997) 2760.
    [23] B. Ilic, Y. Yang and H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett., 85, 13 (2004).
    [24] S. K. Sheem and T. G. Giallorenzi, “Single-mode fiber-optical power divider: encapsulated etching technique,” Opt. Lett., 4 (1979) 29.
    [25] B. Ilic, H. G. Craighead, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys., 95, 7 (2003) 3694.
    [26] K. Weir, W. J. O. Boyle, B. T. Meggitt, A. W. Palmer, and K. T. V. Grattan, “A novel adaptation of the Michelson interferometer for the measurements of vibration,” Journal of lightwave technology, 10, 5 (1992) 700.
    [27] Y. Alayli, S. Topqcu, D. Wang, R. Dib, L. Chassagne, “Applications of a high accuracy optical fiber displacement sensor to vibrometry and profilometry,” Sensors and actuators A physical, 116 (2004) 85.
    [28] B. Cheng, J. Y. Huang, T. T. Yen, Y. P. Huang, and J. A. Yeh, “Path-invariant fiber-based interferometric scanners for OCT,” MicroElectroMechanical Conference 2004.
    [29] B. Ilic, D. Czaplewski, M. Zalalutdinov, and H. G. Craighead, “Single cell detection with micromechanical oscillators,” J. Vac. Sci Technol., B19, 6 (2001) 2825.
    [30] A. Gupta and D. Akin, “Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators,” J. Vac. Sci Technol., B, 22, 6 (2004) 2785.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE