研究生: |
劉晁禎 Liu, Chao-Zhen |
---|---|
論文名稱: |
基於非對稱型製程損失指標探討供應商選擇問題之研究 An Investigation of Supplier Selection Based on the Process Loss Index with Asymmetric Tolerances |
指導教授: |
吳建瑋
Wu, Chien-Wei |
口試委員: |
蘇明鴻
Shu, Ming-Hung 王姿惠 Wang, Zih-Huei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 非對稱允差 、供應商選擇 、馬可夫鏈蒙第卡羅 、複式抽樣法 、涵蓋率 |
外文關鍵詞: | Asymmetric tolerances, Supplier selection, Markov Chain Monte Carlo, Bootstrap method, Coverage rate |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今業界中,如何評估製程產出績效以及挑選較佳的合作供應商已是製造商必須正視的重要課題。製程能力指標為業界常用來衡量製程能力的工具,其中非對稱型製程損失指標Le"不僅能有效衡量製程準度與精度,對於目標值不等於規格中心的非對稱允差製程亦能精準量測其製程能力,故本研究將基於Le"對實務上可能發生的情況進行全面的探討。
本研究主要探討的議題分成兩個部分,包含衡量單一製程能力以及比較新舊供應商其製程能力孰優孰劣,並應用抽樣分配法、複式抽樣法、廣義信賴區間法以及貝氏方法結合馬可夫鏈蒙第卡羅(Markov Chain Monte Carlo, MCMC)技巧等區間估計方法建構出單一製程指標Le"以及兩製程損失指標比值與差值之信賴上界,利用模擬的方式從涵蓋率以及指標上界平均值之結果探討各方法的建構表現,分析結果顯示抽樣分配法以及MCMC能夠可靠地估計單一製程能力,而複式抽樣法則是能在以兩製程損失指標比值為基礎的供應商能力比較提供可靠的檢定結果。最後,本研究透過實際案例說明如何應用複式抽樣法於比較新舊供應商其製程能力之議題,令決策者能對於操作流程更加瞭解。
In the current manufacturing industry, how to assess the process output performance and select the better partner supplier is an important issue that manufacturers must face. And the process capability index is a common tool for measuring the process capability. The process loss index with asymmetric tolerances Le" could not only effectively measure the process accuracy and precision, but also precisely measure the process with asymmetric tolerances whose target value is not equal to the midpoint of specification interval. Therefore, this study will conduct the comprehensive investigation for the practical situation based on the index Le".
The topics discussed in this study divided into two parts, including measuring the single process capability and comparing the process capability between original and new suppliers, and then applied the interval estimation methods such as Frequentist Distribution approach (FD approach), Bootstrap method, Generalized Confidence Intervals approach and the Bayesian approach integrated with Markov Chain Monte Carlo (MCMC) technique to construct the Upper Confidence Bound (UCB) of single process index Le", the ratio and difference of two process loss indexes, respectively. Conduct the simulations to evaluate the constructive performance for various methods from the perspective of coverage rate and average value of UCB of index. The simulation results show that FD approach and MCMC could reliably measure the single process capability and Bootstrap method could provide the reliable testing results for the hypothesis testing based on the ratio of two process loss indexes. Finally, the practical case study shows how to apply the Bootstrap method to comparison of process capability between new and original suppliers and make the decision maker more aware of the whole operation process.
一、中文文獻
1. 楊琇欽 (2013)。基於非對稱型製程能力指標比較供應商產出績效方法之研究。國立臺灣科技大學工業管理系碩士論文,未出版,臺北市。
二、英文文獻
1. Bernardo, J. M., & Smith, A. F. (1993). Bayesian theory (Vol. 405): John Wiley & Sons.
2. Box, G. E., & Tiao, G. C. (2011). Bayesian inference in statistical analysis (Vol. 40): John Wiley & Sons.
3. Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23(1), 17-26.
4. Chan, L. K., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability: Cpm. Journal of Quality Technology, 20(3), 162-175.
5. Chang, Y. C., Pearn, W. L., & Wu, C. W. (2007). On the sampling distributions of the estimated process loss indices with asymmetric tolerances. Communications in Statistics—Simulation Computation®, 36(6), 1153-1170.
6. Chen, J. P., & Chen, K. S. (2004). Comparing the capability of two processes using Cpm. Journal of Quality Technology, 36(3), 329-335.
7. Cheng, S. W., & Spiring, F. A. (1989). Assessing process capability: a Bayesian approach. IIE transactions, 21(1), 97-98.
8. Chou, Y. M. (1994). Selecting a better supplier by testing process capability indices. Quality engineering, 6(3), 427-438.
9. Daniels, L., Edgar, B., Burdick, R. K., & Hubele, N. F. (2004). Using confidence intervals to compare process capability indices. Quality engineering, 17(1), 23-32.
10. Efron, B. (1979). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics (pp. 569-593): Springer.
11. Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans (Vol. 38): Siam.
12. Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American statistical Association, 82(397), 171-185.
13. Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 54-75.
14. Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American statistical Association, 85(410), 398-409.
15. Gilks, W. R., Best, N. G., & Tan, K. K. C. (1995a). Adaptive rejection Metropolis sampling within Gibbs sampling. Journal of the Royal Statistical Society: Series C, 44(4), 455-472.
16. Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995b). Markov chain Monte Carlo in practice: Chapman and Hall/CRC.
17. Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Journal of the Royal Statistical Society: Series C, 41(2), 337-348.
18. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
19. Huang, D. Y., & Lee, R. F. (1995). Selecting the largest capability index from several quality control processes. Journal of Statistical Planning Inference, 46(3), 335-346.
20. Johnson, T. (1992). The relationship of Cpm to squared error loss. Journal of Quality Technology, 24(4), 211-215.
21. Juran, J. M. (1974). Basic concepts. Quality control handbook, 2.
22. Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52.
23. Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American statistical Association, 91(435), 1343-1370.
24. Lee, J. C., Hung, H. N., Pearn, W. L., & Kueng, T. L. (2002). On the distribution of the estimated process yield index Spk. Quality Reliability Engineering International, 18(2), 111-116.
25. Liao, M. Y. (2017). Efficient Technique for Assessing Actual Non‐normal Quality Loss: Markov Chain Monte Carlo. Quality Reliability Engineering International, 33(5), 945-957.
26. Lin, C. J., & Pearn, W. L. (2010). Process selection for higher production yield based on capability index Spk. Quality Reliability Engineering International, 26(3), 247-258.
27. Mathew, T., Sebastian, G., & Kurian, K. M. (2007). Generalized confidence intervals for process capability indices. Quality Reliability Engineering International, 23(4), 471-481.
28. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. J. T. j. o. c. p. (1953). Equation of state calculations by fast computing machines. 21(6), 1087-1092.
29. Pearn, W. L., Chang, Y. C., & Wu, C. W. (2004a). Distributional and inferential properties of the process loss indices. Journal of applied statistics, 31(9), 1115-1135.
30. Pearn, W. L., Chang, Y. C., & Wu, C. W. (2006). Measuring process performance based on expected loss with asymmetric tolerances. Journal of applied statistics, 33(10), 1105-1120.
31. Pearn, W. L., & Wu, C. W. (2005). Process capability assessment for index Cpk based on Bayesian approach. Metrika, 61(2), 221-234.
32. Pearn, W. L., Wu, C. W., & Lin, H. C. (2004b). Procedure for supplier selection based on Cpm applied to super twisted nematic liquid crystal display processes. International Journal of Production Research, 42(13), 2719-2734.
33. Shiau, J. J. H., Chiang, C. T., & Hung, H. N. (1999). A Bayesian procedure for process capability assessment. Quality Reliability Engineering International, 15(5), 369-378.
34. Tseng, S. T., & Wu, T. Y. (1991). Selecting the best manufacturing process. Journal of Quality Technology, 23(1), 53-62.
35. Tsui, K. L. (1997). Interpretation of process capability indices and some alternatives. Quality engineering, 9(4), 587-596.
36. Weerahandi, S. (1995). Generalized confidence intervals. In Exact Statistical Methods for Data Analysis (pp. 143-168): Springer.
37. Wu, C. W. (2008). Assessing process capability based on Bayesian approach with subsamples. European Journal of Operational Research, 184(1), 207-228.
38. Wu, C. W., & Huang, P. H. (2010). Generalized confidence intervals for comparing the capability of two processes. Communications in Statistics—Theory Methods, 39(13), 2351-2364.
39. Wu, C. W., Shu, M. H., Pearn, W. L., & Liu, K. H. (2008). Bootstrap approach for supplier selection based on production yield. International Journal of Production Research, 46(18), 5211-5230.