研究生: |
蔡明利 Tsai, Ming-Li |
---|---|
論文名稱: |
[S,S]/[S,N]/[S,O]鍵結模式之雙亞硝鐵化合物(Dinitrosyl Iron Complexes):合成及{Fe(NO)2}電子結構之分析 Anionic/Neutral Dinitrosyl Iron Complexes (DNICs) Containing [S,S]/[S,N]/[S,O] Ligation Modes: Synthesis and Electronic Structure Study of {Fe(NO)2} Core |
指導教授: |
廖文峯
Liaw, Wen-Feng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 149 |
中文關鍵詞: | 一氧化氮 、生物無機 、電子結構 、理論計算 |
外文關鍵詞: | nitric oxide, Bioinorgainic chemistry, electronic structure, quantum calculation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
成功的合成帶電、中性{Fe(NO)2}9雙亞硝基鐵錯合物及雙鐵核四亞硝基錯合物[Fe(μ-SR)(NO)2]2 (Roussin’s Red Esters)可用以闡明其相互轉換機制。與二當量咪唑反應而進行橋接硫醇鍵斷裂反應所形成之中性{Fe(NO)2}9 [(SC6H4-o-NHCOPh)(Im)Fe(NO)2] (2) (Im =咪唑)之反應途徑相反,加入路易士鹼[OPh]–與[Fe(μ-SC6H4-o-NHCOPh)(NO)2]2 (1)及[Fe(μ-SC6H4-o-COOH)(NO)2]2 (4) 反應則會生成具有電子自旋共振訊號並以[SC6H4-o-NCOPh]2– (硫,氮-鍵結模式)及[SC6H4-o-COO]2– (硫,氧-鍵結模式)配位基與{Fe(NO)2}中心螯合之帶電{Fe(NO)2}9 [(SC6H4-o-NCOPh)Fe(NO)2]– (5) 和 [(SC6H4-o-COO)Fe(NO)2]– (6) 雙亞硝基鐵錯合物。化合物1-5已由紅外線光譜, 紫外光/可見光電子吸收光譜,電子自旋共振光譜及X射線單晶繞射等方式鑑定。仔細比較上述錯合物之電子自旋共振光譜(室溫及77 K之光譜模式)及紅外線光譜(一氧化氮配位基振動頻率之相對位置)指出結合電子自旋共振光譜及紅外線光譜可作為有效之光譜工具來區別不同鍵結模式之帶電{Fe(NO)2}9雙亞硝基鐵錯合物,中性{Fe(NO)2}9雙亞硝基鐵錯合物及雙鐵核四亞硝基錯合物。此外上述錯合物之配位基架構同時提供在生物體內多肰鏈或具有HScys-X-X-L (L = -NHC(O)R, -C(O)OH)架構之含有半胱氨酸生物巨分子與{Fe(NO)2}9中心鍵結模式之相關訊息。藉由[(S(CH2)3S)Fe(NO)2]–之密度泛函理論計算結果可進一步闡釋如何以改變錯合物S-Fe-S螯合角度所造成之結構限制來進一步以三種電子氧化還原電子對({Fe(NO)2}8 {Fe(NO)2}9 {Fe(NO)2}10)來調控其電子結構且於{Fe(NO)2}8電子結構之雙亞硝基鐵錯合物生成限域硫自由基(localized sulfide radical)及於{Fe(NO)2}10電子結構之雙亞硝基鐵錯合物生成非限域硫自由基(delocalized thiyl radical)。這個特殊現象可能是由具有氧化還原能力之鐵中心、硫醇配位基及一氧化氮配位基之間相互電子轉移所造成。此外不同鍵結模式之雙亞硝基鐵錯合物([S/S]、[S/N, S/O, N/N]及[O/O])則是傾向於維持{Fe(NO)2}9 電子組態而以({FeI(NO•)2}、{FeII(NO•)(NO–)}及{FeIII(NO—)2})等不同之共振形式來進行調控。基於電灑游離法質譜分析及一氧化氮紅外線光譜振動頻率之鑑定,可能具有細胞專一性之雙鐵核四亞硝基錯合物 ([Fe(μ-SC2H4C(O)NH-2-deoxyglucosamide)2(NO)2]2 (8) 可藉由將[Fe(贡-SC2H4COOH)(NO)2]2 (7)之COOH端與葡萄糖胺(glucosamine)之NH2端以形成醯胺鍵之方法成功合成。
Roussin’s red esters [Fe(μ-SR)(NO)2]2 (RREs) were synthesized to delineate the interconversion among the anionic/neutral {Fe(NO)2}9 DNICs and RREs. In contrast to the bridged-thiolate cleavage yielding the neutral {Fe(NO)2}9 [(SC6H4-o-NHCOPh)(Im)Fe(NO)2] (2) (Im = imidazole) by reacting 2 equiv of imidazole with [Fe(μ-SC6H4-o-NHCOPh)(NO)2]2 (1), addition of the Lewis base [OPh]– to the THF solution of complex 1 and [Fe(μ-SC6H4-o-COOH)(NO)2]2 (4) yielded the EPR-active, anionic {Fe(NO)2}9 [(SC6H4-o-NCOPh)Fe(NO)2]– (5) and [(SC6H4-o-COO)Fe(NO)2]– (6) with the anionic [SC6H4-o-NCOPh]2– (S,N-bonded) and the anionic [SC6H4-o-COO]2– (S,O-bonded) ligands bound to the {Fe(NO)2} core in a bidentate manner, respectively. Complexes 1-5 were characterized by IR, UV-vis, EPR, and single-crystal X-ray diffraction. Detailed examinations of the EPR (the pattern at room temperature and 77 K) and IR spectra (the relative position of the νNO stretching frequencies) of these complexes indicates that the EPR spectrum in combination with the IR νNO spectrum may serve as an efficient tool for the discrimination of the different binding modes of anionic {Fe(NO)2}9 DNICs, the neutral {Fe(NO)2}9 DNICs, and Roussin’s red ester. Also, the ligand frameworks provide an opportunity to demonstrate the possible binding modes of Fe(NO)2 fragment in polypeptide chain or cysteine-containing biomolecules possessing the biological HScys-X-X-L (L = -NHC(O)R, -C(O)OH) motif. The detailed DFT calculations further elucidate that the modulations of electronic structures via geometrical constraints on the {Fe(NO)2}9 core, i.e. increase/decrease of the S-Fe-S chelating angles of [(S(CH2)3S)Fe(NO)2]–, might adopt three redox-couples ({Fe(NO)2}8 {Fe(NO)2}9 {Fe(NO)2}10) and accompanied by the formations the localized sulfide radical species in the {Fe(NO)2}8 DNICs/ delocalized thiyl radical species in the {Fe(NO)2}10 DNICs, respectively. This extraordinary phenomenon may result from the inter-electron-transfer among redox-active Fe center, thiolate and NO ligands by tuning the ligand filed strength. The modulations of electronic structures ({FeI(NO•)2}, {FeII(NO•)(NO—)}, and {FeIII(NO—)2}) derived from [S/S], [S/N, S/O, N/N], [O/O] ligation modes, respectively, would preserve the {Fe(NO)2}9 core. Based on the ESI-MS and IR 轩NO stretching frequencies data, a potential specific-targeting RREs ([Fe(μ-SC2H4C(O)NH-2-deoxyglucosamide)2(NO)2]2 (8) was successfully synthesized by the amide-bond formation between the COOH end on the [Fe(贡-SC2H4COOH)(NO)2]2 (7) and the NH2 end on the glucosamine.
V Reference
1. Furchgott, R. F. Angew. Chem. Int. Ed. 1999, 38, 1870-1880.
2. Sellers, V. M.; Johnson, M. K.; Dailey, H. A. Biochemistry 1996, 35, 2699.
3. Ignarro, L. J. Angew. Chem. Int. Ed. 1999, 38, 1882-1892.
4. Murad, F. Angew. Chem. Int. Ed. 1999, 38, 1856-1868.
5. Wendehenne, D.; Pugin, A.; Klessig, D. F.; Durner, J. Trends Plant Sci. 2001, 6, 177-183.
6. Kavya, R.; Saluja, R.; Singh, S.; Dikshit, M. Nitric Oxide Biol. Chem. 2006, 15, 280-294.
7. (a) Hess, D. T.; Matsumoto, A.; Nudelman, R.; Stamler, J. S. Nat. Cell Biol. 2001, 3, E46-E49. (b) Hess, D. T.; Matsumoto, A.; Kim, S. O.; Marshall, H. E.; Stamler, J. S. Nat. Rev. Mol. Cell Biol. 2005, 6, 150-166. (c) Benhar, M.; Stamler, J. S. Nat. Cell Biol. 2005, 7, 645-646.
8. (a) Uehara, T.; Nakamura, T.; Yao, D.; Shi, Z. Q.; Gu, Z.; Ma, Y.; Masliah, E.; Nomura, Y.; Lipton, S.A. Nature 2006, 441, 513-517. (b) Forrester, M. T.; Behnar, M.; Stamler, J. S. ACS Chem. Biol. 2006 , 1, 355-358.
9. (a) Pawloski, J.; Hess, D. T.; Stamler, J. S. Nature 2001, 409, 622-626. (b) Gross, S. S. Nature 2001, 409, 577-578. (c) Gladwin, M. T.; Lancaster, J. R.; Freeman, B. A.; Schechter, A. N. Nat. Med. 2003, 9, 496-500.
10. (a) Weichsel, A.; Andersen, J. F.; Roberts, S. A.; Montfort, W. R. Nat. Struct. Biol. 2000, 7, 551-554. (b) Weichsel, A.; Maes, E. M.; Andersen, J. F.; Valenzuela, J. G.; Shokhireva, T. K.; Walker, F. A.; Montfort, W. R. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 594-599.
11. (a) Mukhopadhyay, P.; Zheng, M.; Bedzyk, L. A.; LaRossa, R. A.; Storz, G. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 745-750. (b) Autréaux, B.; Tucker, N. P.; Dixon, R.; Spiro, S. Nature 2005, 437, 769-772.
12. (a) Cary, S. P. L.; Winger, J. A.; Derbyshire, E. R.; Marletta, M. A. Trends Biochem. Sci. 2006, 31, 231-239. (b) Kiley, P. J.; Beinert, H. Curr. Opin. Microbiol. 2003, 6, 181-185. (c) Spiro, S. FEMS Microbiol. Rev. 2007, 32, 193-211.
13. Pomposilello, P. J.; Demple, B. Trends Biochem. Sci. 2001, 19, 109-114.
14. Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 5146.
15. (a) Rogers, P. A.; Ding, H. J. Biol. Chem. 2001, 276, 30980-30986. (b) Yang, W.; Rogers, P. A.; Ding, H. J. Biol. Chem. 2002, 277, 12868-12873.
16. (a) Stamler, J. S. Cell 1994, 78, 931-936. (b) Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898-1902. (c) Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993-1017. (d) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935-991. (e) Ueno, T.; Susuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochem. Pharmacol. 2002, 63, 485-493. (f) Lee, J.; Chen, L.; West, A. H.; Richter-Addo, G. B. Chem. Rev. 2002, 102, 1019-1065. (g) McCleverty, J. A. Chem. Rev. 2004, 104, 403-418.
17. (a) Williams, D. L. H. Acc. Chem. Res. 1999, 32, 869-876. (b) Wang, K.; Zhang, W.; Xian, M.; Hou, Y. C.; Chen, X. C.; Cheng, J. P.; Wang, P. G. Curr. Med. Chem. 2000, 7, 821-834. (c) Toubin, C.; Yeung, D. Y.-H.; English, A. M.; Peslherbe, G. H. J. Am. Chem. Soc. 2002, 124, 14816-10817. (d) Baciu, C.; Cho, K.-B.; Gauld, J. W. J. Phys. Chem. B 2005, 109, 1334-1336. (e) Stasko, N. A.; Fischer, T. H.; Schoenfisch, M. H. Biomacromolecules. 2008, 9, 834-841. (f) Perissinotti, L. L.; Estrin, D. A.; Leitus, G.; Doctorovich, F. J. Am. Chem. Soc. 2006, 128, 2512-2513..
18. Costanzo, S.; Ménage, S.; Purrello, R.; Bonomo, R. P.; Fontecave, M. Inorg. Chimi. Acta 2001, 318, 1-7.
19. Alencar, J. L.; Chalupsky, K.; Sarr, M.; Schini-Kerth, V.; Vanin, A. F.; Stoclet, J. C.; Muller, B. Biochem. Pharmacol. 2003, 66, 2365-2374.
20. Mülsch, A.; Mordvintcev, P. M.; Vanin, A. F.; Busse, R. FEBS Lett 1991, 294, 252-256.
21. Weigant, F. A. C.; Malyshev, I. Y.; Kleschyov, A. L.; van Faassen, E.; Vanin, A. F. FEBS Lett 1999, 455, 179-182.
22. Kleschyov, A. L.; Hubert, G.; Munzel, T.; Stoclet, J. C.; Bucher, B. BMC Pharmacol. 2002, 2:3
23. (a) Bello, M. L.; Nuccetelli, M.; Caccuri, A. M.; Stella, L.; Parker, M. W.; Rossjohn, J.; McKinstry, W. J.; Mozzi, A. F.; Federici, G.; Polizio, F.; Pedersen, J. Z.; Ricci, G. J. Biol. Chem. 2001, 276, 42138-42145. (b) Maria, F. D.; Pedersen, J. Z.; Caccuri, A. M.; Antonini, G.; Turella, P.; Stella, L.; Bello, M. L.; Federici, G.; Ricci, G. J. Biol. Chem. 2003, 278, 42283-42293. (c) Turella, P.; Pedersen, J. Z.; Caccuri, A. M.; Maria, F. D.; Mastroberardino, P.; Bello, M. L.; Federici, G.; Ricci, G. J. Biol. Chem. 2003, 278, 42294-42299. (d) Cesareo, E.; Parker, L. J.; Parker, L. J.; Pedersen, J. Z.; Nuccetelli, M.; Mazzetti, A. P.; Pastore, A.; Federici, G..; Caccuri, A. M.; Ricci, G..; Adams, J. J.; Parker, M. W.; Bello, M. L. J. Biol. Chem. 2005, 280, 42172-42180. (e) Pedersen, J. Z.; Maria, F. D.; Turella, P.; Federici, G.; Mattel, M.; Fabrini, R.; Dawood, K. F.; Massimi, M.; Caccuri, A. M.; Ricci, G. J. Biol. Chem. 2007, 282, 6364-6371.
24. Traylor, T. G.; Sharma, V. S. Biochemistry 1992, 31, 2847-2849.
25. . Barberger, M. D.; Liu, W.; Ford, E.; Mirandal, K. M.; Switzer, C.; Fukuto, J. M.; Farmer, P. J.; Wink, D. A.; Houk, K. N. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 10958-10963.
26. Butler, A. R.; Megson, I. L. Chem. Rev. 2002 102, 1155-1165.
27. Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339-406.
28. Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159-5167.
29. Albano, V. G; Araneo, A; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413-422.
30. (a) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872-5881. (b) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627-2632. (c) Chiang, C.-Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 10867-10874. (d) Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041-6047. (e) Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799-8806. (f) Chen, T.-N.; Lo, F.-C.; Tsai, M.-L.; Shih, K.-N.; Chiang, M.-H.; Lee, G.-H.; Liaw, W.-F. Inorg. Chimi. Acta 2006, 359, 2525-2533. (g) Tsai, M.-L.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6583-6585. (h) Tsai, M.-L.; Hsieh, C.-H.; Liaw, W.-F. Inorg. Chem. 2007, 46, 5110-5117. (i) Huang, H.-W.; Tsou, C.-C.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2008, 47, 2196-2204.(j) Lu, T.-T.; Tsou, C.-C.; Huang , H.-W.; Hsu, I.-J.; Chen, J.-M.; Kuo, T.-S.; W. Y.; Liaw, W.-F. Inorg. Chem. 2008, 47, 6040-6050.
31. (a) C. J. O’Connor Prog. Inorg. Chem. 1982, 29, 203-283. (b) Bain, G. A.; Berry, J. F. J. Chem. Educ. 2008, 85, 532-536.
32. Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.
33. Neese, F. ORCA-an ab Initio, Density functional and Semiempirical Electronic
Structure Package, Version 2.6.00; University of Bonn: Germany, 2008.
34. (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. (b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824. (c) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571-2577. (d) Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem.Phys. Lett. 1995, 240, 283-290. (e) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007-1023.
35. (a) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41-51. (b) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys. 1979, 78, 3396-3402. (c) Vahtras, O.; Almlöf, J. E.; Feyereisen, M. W. Chem. Phys. Lett. 1993, 213, 514-518.
36. (a) Dirac, P.A.M. Proc. Camb. Phil. Soc., 1930, 26, 376-385. (b) Slater, J.C. The quantum theory of atomsmolecules and solids, Vol. 4, McGraw Hill, New York, 1974. (c) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys, 1980, 58, 1200-1211. (d) Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B., 1988, 37, 785-789.
37. Szilagyi, R. K.; Metz, M.; Solomon, E. I. J. Phys. Chem. A 2002, 106, 2994-3007.
38. (a) Klamt, A. J. Chem. Phys. 1995, 99, 2224-2235. (b) Sinnecker, S.; Rajendran, A.; Klamt, A.; Diedenhofen, M.; Neese, F. J. Phys. Chem. A 2006, 110, 2235-2245.
39. Neese, F. J. Chem. Phys. 2001, 115, 11080-11096.
40. Luzanov, A. V.; Babich, E. N.; Ivanov, V. V. THEOCHEM 1994, 311, 211-220.
41. Koseki, S.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. 1992, 96, 10768-10772.
42. Neese, F. J. Chem. Phys. 2005, 122, 34107-34113.
43. Hess, B. A.; Marian, C. M.; Wahlgren, U.; Gropen, O. Chem. Phys. Lett. 1996, 251, 365-371.
44. Neese, F. J. Chem. Phys. 2005, 122, 34107-34113
45. Molekel, Advanced Interactive 3D-Graphics for Molecular Sciences, available under http:www.cscs.ch/molekel/.
46. Ghosh, P.; Stobie, K.; Bill, E.; Bothe, E.; Weyhermüller, T.; Ward, M. D.; McCleverty, J. A.; Wieghardt, K. Inorg. Chem. 2007, 46, 522-532.
47. Kahn, O. Molecular Magnetism; VCH: New York, 1993.
48. (a) Ghosh, P.; Bill, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. 2003, 125, 1293-1308. (b) Slep, L. D.; Mijovilovich, A.; Meyer-Klaucke, W.; Weyhermüller, T.; Bill, E.; Bothe, E.; Neese, F.; Wieghardt, K. 2003, 125, 15554-15570.
49. (a) Szilagyi, R. K.; Solomon, E. I. Curr. Opin. Chem. Biol. 2002, 6, 250-258. (b) Solomon, E. I.; Szilagyi, R. K.; DeBeer, G. S.; Basumallick, L. Chem. Rev. 2004, 104, 419-458. (c) Rokhsana, D.; Dooley, D. M.; Szilagyi, R. K. J. Biol. Inorg. Chem. 2008, 13, 371-383.
50. (a) Remenyi, C.; Kaupp, M. J. Am. Chem. Soc. 2005, 127, 11399-11413. (b) Remenyi, C.; Reviakine, R.; Kaupp, M. J. Phys. Chem. B 2007, 111, 8290-8304.
51. (a) Mayer, I. Chem. Phys. Lett. 1983, 97, 270-274. (b) Mayer, I. Int. J. Quantum Chem. 1986, 29, 477-483.
52. (a) In Tables of interatomic Distance and Configuration in Molecules and Ions; Sutton, L. E., Ed.; Chemical Society: London, 1958. (b) Tronc, M.; Huetz, A.; Landau, M.; Pichou, F.; Reinhardt, J. J. Phys, B 1975, 8, 1160-1169. (c) Schenk, G.; Pau, M. Y. M.; Solomon, E. I. J. Am. Chem. Soc. 2003, 126, 505-515
53. (a) Joshi, H. K.; Cooney, J. J. A.; Inscore, F. E.; Gruhn, N. E.; Lichtenberger, D. L.; Enemark, J. H. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3719-3724. (b) McNaughton, R. L.; Lim, B. S.; Knottenbelt, S. Z.; Holm, R. H.; Kirk, M. L. J. Am. Chem. Soc. 2008, 130, 4628-4636.
54. (a) Praneeth, V. K. K.; Neese, F.; Lehnert, N. Inorg. Chem. 2005, 44, 2570-2572. (b) Fujisawa, K.; Tateda, A.; Miyashita, Y.; Okamoto, K.-I.; Paulat, F.; Praneeth, V. K. K.; Merkle, A.; Lehnert, N. J. Am. Chem. Soc. 2008, 130, 1205-1213.
55. Brown, C. D.; Neidig, M. L.; Neibergall, M. B.; Lipscomb, J. D.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 7427-438.
56. Chen, P.; Fujisawa, K.; Helton, M. E.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 2003, 125, 6394-6408.
57. Sarangi, R.; York, J. T.; Helton, M. E.; Fujisawa, K.; Karlin, K. D.; Tolman, W. B.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. J. Am. Chem. Soc. 2008, 130, 676-686.
58. Grapperhaus, C. A.; Kozlowski, P. M.; Kumar, D.; Frye, H. N.; Venna, K. B.; Poturovic, S. Angew. Chem. Int. Ed. 2007, 46, 4085-4088.
59. (a) Szilagyi, R. K.; Lim, B. S.; Glaser, T.; Holm, R. H.; Hedman, B.; Hodgson, K. O. Solomon, E. I. J. Am. Chem. Soc. 2003, 125, 9158-9169. (b) Grapperhaus, C. A.; Mullins, C. S.; Kozlowski, P. M.; Mashuta, M. S. Inorg. Chem. 2004, 43, 2859-2866.
60. (a) Vogel, K. M.; Kozlowski, P. M.; Zgierski, M. Z.; Spiro, T. G. J. Am. Chem. Soc. 1999, 121, 9915-9921. (b) Wyllie, G. R.; Schulz, C. E.; Scheidt, W. R. Inorg. Chem. 2004, 42, 5722-5734. (c) Praneeth, V. K. K.; Nather, C.; Peters, G.; Lehnert, N. Inorg. Chem. 2004, 43, 2759-2811.
61. Tsou, C.-C.; Lu, T.-T.; Liaw, W.-F. J. Am. Chem. Soc. 2007, 129, 12626-12627.
62. Benhar, M.; Stamler, J. S. Nature Cell Biol. 2005, 7, 645-646.
63. Chen, Y.-J.; Ku, W.-C.; Feng, L.-T.; Tsai, M.-L.; Hsieh, C.-H.; Hsu, W.-H.; Liaw, W.-F.; Hung, C.-F.; Chen, Y.-J. J. Am. Chem. Soc. 2008, 130, 10929-10938.
64. Lo, F. –C.; Chen, C. –L.; Lee, C. –M.; Tsai, M. –C.; Lu, T. –T.; Liaw, W. –F.; Yu, S. S. –F. J. Biol. Inorg. Chem. 2008, 13, 961-972.
65. (a) Humphrey, J.; Chamberlin, R. Chem. Rev. 1997, 97, 2243-2266. (b) Albericio, F. Curr. Opin. Chem. Biol. 2004, 8, 211-221.
66. Zhang, M.; Zhang, Z.; Blessington, D.; Li, H.; Busch, T. M.; Madrak, V.; Miles, J.; Chance, B.; Glickson, J. D.; Zheng, G. Bioconjugate Chem. 2003, 14, 709-714.