簡易檢索 / 詳目顯示

研究生: 蔡明利
Tsai, Ming-Li
論文名稱: [S,S]/[S,N]/[S,O]鍵結模式之雙亞硝鐵化合物(Dinitrosyl Iron Complexes):合成及{Fe(NO)2}電子結構之分析
Anionic/Neutral Dinitrosyl Iron Complexes (DNICs) Containing [S,S]/[S,N]/[S,O] Ligation Modes: Synthesis and Electronic Structure Study of {Fe(NO)2} Core
指導教授: 廖文峯
Liaw, Wen-Feng
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 149
中文關鍵詞: 一氧化氮生物無機電子結構理論計算
外文關鍵詞: nitric oxide, Bioinorgainic chemistry, electronic structure, quantum calculation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 成功的合成帶電、中性{Fe(NO)2}9雙亞硝基鐵錯合物及雙鐵核四亞硝基錯合物[Fe(μ-SR)(NO)2]2 (Roussin’s Red Esters)可用以闡明其相互轉換機制。與二當量咪唑反應而進行橋接硫醇鍵斷裂反應所形成之中性{Fe(NO)2}9 [(SC6H4-o-NHCOPh)(Im)Fe(NO)2] (2) (Im =咪唑)之反應途徑相反,加入路易士鹼[OPh]–與[Fe(μ-SC6H4-o-NHCOPh)(NO)2]2 (1)及[Fe(μ-SC6H4-o-COOH)(NO)2]2 (4) 反應則會生成具有電子自旋共振訊號並以[SC6H4-o-NCOPh]2– (硫,氮-鍵結模式)及[SC6H4-o-COO]2– (硫,氧-鍵結模式)配位基與{Fe(NO)2}中心螯合之帶電{Fe(NO)2}9 [(SC6H4-o-NCOPh)Fe(NO)2]– (5) 和 [(SC6H4-o-COO)Fe(NO)2]– (6) 雙亞硝基鐵錯合物。化合物1-5已由紅外線光譜, 紫外光/可見光電子吸收光譜,電子自旋共振光譜及X射線單晶繞射等方式鑑定。仔細比較上述錯合物之電子自旋共振光譜(室溫及77 K之光譜模式)及紅外線光譜(一氧化氮配位基振動頻率之相對位置)指出結合電子自旋共振光譜及紅外線光譜可作為有效之光譜工具來區別不同鍵結模式之帶電{Fe(NO)2}9雙亞硝基鐵錯合物,中性{Fe(NO)2}9雙亞硝基鐵錯合物及雙鐵核四亞硝基錯合物。此外上述錯合物之配位基架構同時提供在生物體內多肰鏈或具有HScys-X-X-L (L = -NHC(O)R, -C(O)OH)架構之含有半胱氨酸生物巨分子與{Fe(NO)2}9中心鍵結模式之相關訊息。藉由[(S(CH2)3S)Fe(NO)2]–之密度泛函理論計算結果可進一步闡釋如何以改變錯合物S-Fe-S螯合角度所造成之結構限制來進一步以三種電子氧化還原電子對({Fe(NO)2}8 {Fe(NO)2}9 {Fe(NO)2}10)來調控其電子結構且於{Fe(NO)2}8電子結構之雙亞硝基鐵錯合物生成限域硫自由基(localized sulfide radical)及於{Fe(NO)2}10電子結構之雙亞硝基鐵錯合物生成非限域硫自由基(delocalized thiyl radical)。這個特殊現象可能是由具有氧化還原能力之鐵中心、硫醇配位基及一氧化氮配位基之間相互電子轉移所造成。此外不同鍵結模式之雙亞硝基鐵錯合物([S/S]、[S/N, S/O, N/N]及[O/O])則是傾向於維持{Fe(NO)2}9 電子組態而以({FeI(NO•)2}、{FeII(NO•)(NO–)}及{FeIII(NO—)2})等不同之共振形式來進行調控。基於電灑游離法質譜分析及一氧化氮紅外線光譜振動頻率之鑑定,可能具有細胞專一性之雙鐵核四亞硝基錯合物 ([Fe(μ-SC2H4C(O)NH-2-deoxyglucosamide)2(NO)2]2 (8) 可藉由將[Fe(贡-SC2H4COOH)(NO)2]2 (7)之COOH端與葡萄糖胺(glucosamine)之NH2端以形成醯胺鍵之方法成功合成。


    Roussin’s red esters [Fe(μ-SR)(NO)2]2 (RREs) were synthesized to delineate the interconversion among the anionic/neutral {Fe(NO)2}9 DNICs and RREs. In contrast to the bridged-thiolate cleavage yielding the neutral {Fe(NO)2}9 [(SC6H4-o-NHCOPh)(Im)Fe(NO)2] (2) (Im = imidazole) by reacting 2 equiv of imidazole with [Fe(μ-SC6H4-o-NHCOPh)(NO)2]2 (1), addition of the Lewis base [OPh]– to the THF solution of complex 1 and [Fe(μ-SC6H4-o-COOH)(NO)2]2 (4) yielded the EPR-active, anionic {Fe(NO)2}9 [(SC6H4-o-NCOPh)Fe(NO)2]– (5) and [(SC6H4-o-COO)Fe(NO)2]– (6) with the anionic [SC6H4-o-NCOPh]2– (S,N-bonded) and the anionic [SC6H4-o-COO]2– (S,O-bonded) ligands bound to the {Fe(NO)2} core in a bidentate manner, respectively. Complexes 1-5 were characterized by IR, UV-vis, EPR, and single-crystal X-ray diffraction. Detailed examinations of the EPR (the pattern at room temperature and 77 K) and IR spectra (the relative position of the νNO stretching frequencies) of these complexes indicates that the EPR spectrum in combination with the IR νNO spectrum may serve as an efficient tool for the discrimination of the different binding modes of anionic {Fe(NO)2}9 DNICs, the neutral {Fe(NO)2}9 DNICs, and Roussin’s red ester. Also, the ligand frameworks provide an opportunity to demonstrate the possible binding modes of Fe(NO)2 fragment in polypeptide chain or cysteine-containing biomolecules possessing the biological HScys-X-X-L (L = -NHC(O)R, -C(O)OH) motif. The detailed DFT calculations further elucidate that the modulations of electronic structures via geometrical constraints on the {Fe(NO)2}9 core, i.e. increase/decrease of the S-Fe-S chelating angles of [(S(CH2)3S)Fe(NO)2]–, might adopt three redox-couples ({Fe(NO)2}8 {Fe(NO)2}9 {Fe(NO)2}10) and accompanied by the formations the localized sulfide radical species in the {Fe(NO)2}8 DNICs/ delocalized thiyl radical species in the {Fe(NO)2}10 DNICs, respectively. This extraordinary phenomenon may result from the inter-electron-transfer among redox-active Fe center, thiolate and NO ligands by tuning the ligand filed strength. The modulations of electronic structures ({FeI(NO•)2}, {FeII(NO•)(NO—)}, and {FeIII(NO—)2}) derived from [S/S], [S/N, S/O, N/N], [O/O] ligation modes, respectively, would preserve the {Fe(NO)2}9 core. Based on the ESI-MS and IR 轩NO stretching frequencies data, a potential specific-targeting RREs ([Fe(μ-SC2H4C(O)NH-2-deoxyglucosamide)2(NO)2]2 (8) was successfully synthesized by the amide-bond formation between the COOH end on the [Fe(贡-SC2H4COOH)(NO)2]2 (7) and the NH2 end on the glucosamine.

    Table of Contents I CHAPPER ONE: Introduction 1 Nitric Oxide Biosynthesis. 1 S-nitrosylation in Neurondegenerated Diseases. 3 S-nitrosylation in Regulation of Blood Flow. 5 S-nitrosylation in Vasodilation. 6 Nitrosylation of Non-Haem Iron Center. 8 Nitrosylation of Heme Iron Center. 9 Nitrosylation of the Fe-S Clusters. 11 Storage and Transportation of NO in Biology. 13 Physical/Chemical Properties of NO and Metal Nitrosyl Complexes. 16 Investigation of Electronic Structures of DNICs by XAS. 18 Regulation of NO Releasing Ability of DNICs. 19 II CHAPPER TWO: Experiment Section 22 General Procedures 22 Preparation of [Fe(μ-SC6H4-o-NHCOPh)(NO)2]2 (1). 23 Preparation of [(SC6H4-o-NHCOPh)(Im)Fe(NO)2] (Im = imidazole) (2). 23 Preparation of [PPN][(SC6H4-o-NHCOPh)2Fe(NO)2] (3). 24 Reaction of complex 1 and [PPN][SC6H4-o-NHCOPh] . 24 Reaction of complex 3 and HBF4. 25 Preparation of [Fe(μ-SC6H4-o-COOH)(NO)2]2 (4). 26 Preparation of [Na-18-crown-6-ether][(NO)2Fe(SC6H4-o-NC(O)Ph)] (5). 26 Preparation of [PPN][(NO)2Fe(SC6H4-o-COO)] (6). 27 Preparation of [Fe(μ-SC2H4COOH)(NO)2]2 (7). 28 Preparation of [Fe(μ-SC2H4C(O)NH-2-deoxyglucosamide)2(NO)2]2 (8). 28 EPR Measurements. 29 Magnetic Measurements. 30 Crystallography. 30 Electronic Structure Calculations. 31 III CHAPPER THREE: Results and Disscussion 38 Part I. The Central Roles of Roussin’s Red Esters in Transformations among S-/N-/O-Ligating Dinitrosyl Iron Complexes (DNICs). 38 Magnetic susceptibility study. 52 Part II. Investigation of Electronic Structures of {Fe(NO)2} Cores Modulated by Geometrical Constraints and Ligation Modes with DFT Calculations. 56 Overview: The Significance of the Bioinspired Synthetic DNICs. 56 Study of Electronic Structure of {Fe(NO)2} Cores by DFT Calculations. 59 Part III. Biological Application of Water-Soluble Roussin’s Red Esters. 130 IV CHAPTER FOUR: Conclusion and Comments 136 V Reference 141 List of Tables Table I 1. Classification of Mammalian Nitric Oxide Synthases 3 Table II 1. Crystal data and structure refinement of [(SC6H4-o-NHCOPh)(Im)Fe(NO)2] (2) 34 Table II 2. Crystal data and structure refinement of [Na-18-crown-6-ether] [(NO)2Fe(SC6H4-o-NC(O)Ph)] (5) 35 Table II 3. Crystal data and structure refinement of [PPN][(NO)2Fe(SC6H4-o-COO)] (6) 36 Table II 4. Crystal data and structure refinement of [Fe(μ-SC2H4COOH)(NO)2]2 (7) 37 Table III 1. Selected bond distances (Å) and bond angles (deg) of complex 2. 40 Table III 2. Selected bond distances (Å) and bond angles (deg) of complex 5. 47 Table III 3. Selected bond distances (Å) and bond angles (deg) of complex 6. 48 Table III 4. Summary of the exchange parameter and the percentage of the resonance hybrid among {Fe-(NO+)2}9, {Fe+(NO•)2}9, and {Fe2+(NO•)(NO–)}9.a 55 Table III 5. Comparison of experimental and calculated bond lengths [Å] and angles [deg] in complex SEt-DNIC. 61 Table III 6 Comparison of experimental and calculated bond lengths [Å] and angles [deg] in complex 13SS-DNIC. 62 Table III 7. Comparison of experimental and calculated bond lengths [Å] and angles [deg] in complex NSEt-DNIC. 62 Table III 8. Comparison of experimental and calculated bond lengths [Å] and angles [deg] in complex Neu-DNIC. 62 Table III 9. Comparison of experimental and calculated bond lengths [Å] and angles [deg] in complex SA-DNIC. 63 Table III 10. Comparison of experimental and calculated bond lengths [Å] and angles [deg] in complex SO-DNIC. 64 Table III 11. Comparison of experimental and calculated bond lengths [Å] and angles [deg] in complex NN-DNIC. 64 Table III 12. The Experimental and calculated EPR g-values of complexes 71 Table III 13.Selective Mayer bond orders of 13SS- and SEt-DNICs 73 Table III 14. Charge distributions of important molecular orbitals of [13SS] calculated with BP/aug-cc-VTZP 85 Table III 15. Charge distributions of important molecular orbitals of [SEt] calculated with BP/aug-cc-VTZP 88 Table III 16. Charge distributions of important molecular orbitals of 60° complex calculated with BP/aug-cc-VTZP 107 Table III 17. Charge distributions of important molecular orbitals of 160° complex calculated with BP/aug-cc-VTZP 113 Table III 18. Charge distributions of important molecular orbitals of [NSEt] calculated with BP/aug-cc-VTZP 128 Table III 19. Charge distributions of important molecular orbitals of [NN] calculated with BP/aug-cc-VTZP 129 Table III 20. Selected bond distances (Å) and bond angles (deg) of [Fe(贡-SC2H4COOH)(NO)2]2 (7) 131 List of Figures Figure I 1. The reaction catalyzed by nitric oxide synthase. 2 Figure I 2. PDI catalyzes protein folding in the ER by oxidizing nascent protein thiols to disulfide (top) and rearranging “incorrect” disulfides (bottom). The flavoprotein Ero1 regenerates oxidized PDI by transferring electrons to molecular oxygen. 4 Figure I 3. Mitochondrial dysfunction or NMDAR overexicitation promotes S-nitrosylation of PDI, which leads to protein misfolding , ER stress, and cell death. 5 Figure I 4. The pathway for export from the RBC of NO-related bioactivity through transfer of NO groups from b-chain Cys 93 of Hb at the membrane-cytosol interface. 6 Figure I 5. Ribbons drawing of cNP structure (top) and proposed mechanism for reversible heme nitrosylation and Cys-60 nitrosation in cNP (bottom). 8 Figure I 6. Schematic representation of the proposed mechanism for transcriptional activation by NorR. 9 Figure I 7. Schematic illustration of the mechanism of heme dependent activation of cytosolic guanylase cyclase by nitric oxide (top) and tonic/acute NO signal transduction through guanylate cyclase. 11 Figure I 8. The soxRS regulon. The soxRS locus is composed of the divergently transcribed soxR and soxS genes. 12 Figure I 9. Distinct activation mechanism for SoxR. Shaded ovals: DNA binding domains; unshaded ovals, iron binding domains. SoxR is shown as a homodimer. (A) Redox-regulation. (B) Model for activation of SoxR by nitrosylation (left) and proposed mechanism of the repair of nitric oxide-modified ferredoxin [2Fe-2S] cluster by cysteine desulfurase. 13 Figure I 10. Schematic representation of formation mechanism (left) and crystal structure (right) of the DNDGIC-bounded GST P1-1. 16 Figure I 11. Molecular orbitals of NO. 17 Figure I 12. Fe K-edge spectra of Fe foil, [(NO)Fe(S2CNEt2)2)], FeO, Fe2O3, [(NO)2Fe(SePh)2)]-, and [(NO)2Fe(S5)]- (left) and Biomemetic degradation and reassembly of the [2Fe-2S] cluster. [S5Fe(贡-S)2FeS5]2- (right) 19 Figure III 1. ORTEP drawing and labeling scheme of [(SC6H4-o-NHCOPh)(Im)Fe(NO)2] (2) with thermal ellipsoids drawn at 30 % probability. 40 Figure III 2. (a) EPR spectrum of complex 2 with gav=2.031 (aN1=2.4, aN3 = 4.1 G) at 298 K, (b) EPR spectrum of complex 3 with gav = 2.0288 (a = 2.344 G) at 298 K. 41 Figure III 3. ORTEP drawing and labeling scheme of [Na-18-crown-6-ether] [(NO)2Fe(SC6H4-o-NC(O)Ph)] (5) with thermal ellipsoids drawn at 30% probability. 46 Figure III 4. ORTEP drawing and labeling scheme of [(NO)2Fe(SC6H4-o-COO)]– (6) with thermal ellipsoids drawn at 50% probability. 48 Figure III 5. Experimental (black solid line) and simulated (red dash line) EPR spectra of (a) complex 1 with g1 = 2.043, g2 = 2.031, g3 = 2.015; W1 = 22 G, W2 = 16 G and W3 = 12 G at 77K. (b) complex 2 with g1= 2.043; g2 =2.030; g3=2.015; W1= 13G; W2=13G; W3=13G at 77K. (c) complex 5 with g1 = 2.052, g2 = 2.033, and g3 = 2.011; W1 = 30 G, W2 = 20 G and W3 = 28 G at 77K. (d) complex 6 with g1 = 2.054, g2 = 2.036, g3 = 2.012; W1 = 13 G, W2 = 16 G and W3 = 8 G at 77K. 51 Figure III 6. Plot of the magnetic susceptibility (black) and effective magnetic moment(blue) vs. temperature of complex 2,3a, 6, 7. 52 Figure III 7. Optimized structure of SEt-DNICs 61 Figure III 8. Optimized structure of 13SS-DNICs 61 Figure III 9. Optimized structure of NSEt-DNICs 61 Figure III 10. Optimized structure of Neu-DNICs 61 Figure III 11. Optimized structure of SA-DNICs 63 Figure III 12. Optimized structure of SO-DNICs 63 Figure III 13. Optimized structure of NN-DNICs 63 Figure III 14. MO diagram and contour plots of (a) 1,3-propanedithiolate (b) two ethane thiolates and energy are given in eV. 75 Figure III 15. MO diagram and contour plots of triplet state of (NO)2. 78 Figure III 16. Energy levels diagram for 13SS-DNIC, number on the left of the energy levels denote MO no. predominant metal d character orbitals were marked with light-gray rectangular block for easily identifying the dn configuration of the complex. 80 Figure III 17. Energy level diagram for SEt-DNIC, number on the right of the energy levels denotes as MO no. metal d orbitals were marked with light-gray rectangular block for easily identifying the dn configuration of the complex. 81 Figure III 18. The contour plots of important Fe-N(O) bonding orbitals in the 13SS-DNIC (<刍50> to <刍53>) and in the SEt-DNIC (<刍55>, <刍56>, <刍57> and <刍59>). 90 Figure III 19. (a) The total energies deference (b) the Mulliken spin density of selective atoms (c) the spin density vs charge plot of Fe (d) the spin density of Fe vs Mayer bond order of Fe-N1 plot versus S-Fe-S angles plot in relaxed potential energy surface scan calculation. 93 Figure III 20. Contour plots (cutoff = 0.005 a.u) of spin density distribution of selective S-Fe-S angles DNICs. The upper numbers represent the S-Fe-S angle. 95 Figure III 21. The plot of S-Fe-S (deg) angle vs (a) S1-S2 distance (Å) (b) S1-S2 Mayer bond orders 100 Figure III 22. (a) Contour plots of selected 刍 spin corresponding orbitals of 13SS-DNIC and 60° complex. (b) Schematic representation of bonding interactions between the orthogonal NO 钉* orbitals and metal d orbitals. 105 Figure III 23. (a) The Mulliken charge of Fe vs Mayer bond orders of S2-C13. (b) The Mulliken charge of C13 vs Mayer bond orders of S2-C13. (c) The Mulliken charge of S2 vs Mayer bond orders of S2-C13 (d) The Mulliken charge of N2 vs Mayer bond orders of S2-C13 plots versus S-Fe-S angles plots in relaxed potential energy surface scan calculations. 114 Figure III 24. MO diagram and contour plots of (a) imidazolate and (b) (imidazolate)2. 120 Figure III 25. (a) Selected energy levels of two SEt thiolate, two imidazolate, and two NO groups. (b) Schematic representation two types of interactions between metal and ligands. 121 Figure III 26. Crystal structure and labeling scheme of [Fe(贡-SC2H4COOH)(NO)2]2 (7) with thermal ellipsoids drawn at 50 % probability. 131 Figure III 27. Proposed mechanism of amide-bond formation. 133 Figure III 28. (a) The ESI-MS spectrum of complex 8. (b) Calculated and experimental isotope distribution of mass peak 763.1(m/z) of complex 8. 135

    V Reference
    1. Furchgott, R. F. Angew. Chem. Int. Ed. 1999, 38, 1870-1880.
    2. Sellers, V. M.; Johnson, M. K.; Dailey, H. A. Biochemistry 1996, 35, 2699.
    3. Ignarro, L. J. Angew. Chem. Int. Ed. 1999, 38, 1882-1892.
    4. Murad, F. Angew. Chem. Int. Ed. 1999, 38, 1856-1868.
    5. Wendehenne, D.; Pugin, A.; Klessig, D. F.; Durner, J. Trends Plant Sci. 2001, 6, 177-183.
    6. Kavya, R.; Saluja, R.; Singh, S.; Dikshit, M. Nitric Oxide Biol. Chem. 2006, 15, 280-294.
    7. (a) Hess, D. T.; Matsumoto, A.; Nudelman, R.; Stamler, J. S. Nat. Cell Biol. 2001, 3, E46-E49. (b) Hess, D. T.; Matsumoto, A.; Kim, S. O.; Marshall, H. E.; Stamler, J. S. Nat. Rev. Mol. Cell Biol. 2005, 6, 150-166. (c) Benhar, M.; Stamler, J. S. Nat. Cell Biol. 2005, 7, 645-646.
    8. (a) Uehara, T.; Nakamura, T.; Yao, D.; Shi, Z. Q.; Gu, Z.; Ma, Y.; Masliah, E.; Nomura, Y.; Lipton, S.A. Nature 2006, 441, 513-517. (b) Forrester, M. T.; Behnar, M.; Stamler, J. S. ACS Chem. Biol. 2006 , 1, 355-358.
    9. (a) Pawloski, J.; Hess, D. T.; Stamler, J. S. Nature 2001, 409, 622-626. (b) Gross, S. S. Nature 2001, 409, 577-578. (c) Gladwin, M. T.; Lancaster, J. R.; Freeman, B. A.; Schechter, A. N. Nat. Med. 2003, 9, 496-500.
    10. (a) Weichsel, A.; Andersen, J. F.; Roberts, S. A.; Montfort, W. R. Nat. Struct. Biol. 2000, 7, 551-554. (b) Weichsel, A.; Maes, E. M.; Andersen, J. F.; Valenzuela, J. G.; Shokhireva, T. K.; Walker, F. A.; Montfort, W. R. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 594-599.
    11. (a) Mukhopadhyay, P.; Zheng, M.; Bedzyk, L. A.; LaRossa, R. A.; Storz, G. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 745-750. (b) Autréaux, B.; Tucker, N. P.; Dixon, R.; Spiro, S. Nature 2005, 437, 769-772.
    12. (a) Cary, S. P. L.; Winger, J. A.; Derbyshire, E. R.; Marletta, M. A. Trends Biochem. Sci. 2006, 31, 231-239. (b) Kiley, P. J.; Beinert, H. Curr. Opin. Microbiol. 2003, 6, 181-185. (c) Spiro, S. FEMS Microbiol. Rev. 2007, 32, 193-211.
    13. Pomposilello, P. J.; Demple, B. Trends Biochem. Sci. 2001, 19, 109-114.
    14. Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 5146.
    15. (a) Rogers, P. A.; Ding, H. J. Biol. Chem. 2001, 276, 30980-30986. (b) Yang, W.; Rogers, P. A.; Ding, H. J. Biol. Chem. 2002, 277, 12868-12873.
    16. (a) Stamler, J. S. Cell 1994, 78, 931-936. (b) Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898-1902. (c) Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993-1017. (d) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935-991. (e) Ueno, T.; Susuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochem. Pharmacol. 2002, 63, 485-493. (f) Lee, J.; Chen, L.; West, A. H.; Richter-Addo, G. B. Chem. Rev. 2002, 102, 1019-1065. (g) McCleverty, J. A. Chem. Rev. 2004, 104, 403-418.
    17. (a) Williams, D. L. H. Acc. Chem. Res. 1999, 32, 869-876. (b) Wang, K.; Zhang, W.; Xian, M.; Hou, Y. C.; Chen, X. C.; Cheng, J. P.; Wang, P. G. Curr. Med. Chem. 2000, 7, 821-834. (c) Toubin, C.; Yeung, D. Y.-H.; English, A. M.; Peslherbe, G. H. J. Am. Chem. Soc. 2002, 124, 14816-10817. (d) Baciu, C.; Cho, K.-B.; Gauld, J. W. J. Phys. Chem. B 2005, 109, 1334-1336. (e) Stasko, N. A.; Fischer, T. H.; Schoenfisch, M. H. Biomacromolecules. 2008, 9, 834-841. (f) Perissinotti, L. L.; Estrin, D. A.; Leitus, G.; Doctorovich, F. J. Am. Chem. Soc. 2006, 128, 2512-2513..
    18. Costanzo, S.; Ménage, S.; Purrello, R.; Bonomo, R. P.; Fontecave, M. Inorg. Chimi. Acta 2001, 318, 1-7.
    19. Alencar, J. L.; Chalupsky, K.; Sarr, M.; Schini-Kerth, V.; Vanin, A. F.; Stoclet, J. C.; Muller, B. Biochem. Pharmacol. 2003, 66, 2365-2374.
    20. Mülsch, A.; Mordvintcev, P. M.; Vanin, A. F.; Busse, R. FEBS Lett 1991, 294, 252-256.
    21. Weigant, F. A. C.; Malyshev, I. Y.; Kleschyov, A. L.; van Faassen, E.; Vanin, A. F. FEBS Lett 1999, 455, 179-182.
    22. Kleschyov, A. L.; Hubert, G.; Munzel, T.; Stoclet, J. C.; Bucher, B. BMC Pharmacol. 2002, 2:3
    23. (a) Bello, M. L.; Nuccetelli, M.; Caccuri, A. M.; Stella, L.; Parker, M. W.; Rossjohn, J.; McKinstry, W. J.; Mozzi, A. F.; Federici, G.; Polizio, F.; Pedersen, J. Z.; Ricci, G. J. Biol. Chem. 2001, 276, 42138-42145. (b) Maria, F. D.; Pedersen, J. Z.; Caccuri, A. M.; Antonini, G.; Turella, P.; Stella, L.; Bello, M. L.; Federici, G.; Ricci, G. J. Biol. Chem. 2003, 278, 42283-42293. (c) Turella, P.; Pedersen, J. Z.; Caccuri, A. M.; Maria, F. D.; Mastroberardino, P.; Bello, M. L.; Federici, G.; Ricci, G. J. Biol. Chem. 2003, 278, 42294-42299. (d) Cesareo, E.; Parker, L. J.; Parker, L. J.; Pedersen, J. Z.; Nuccetelli, M.; Mazzetti, A. P.; Pastore, A.; Federici, G..; Caccuri, A. M.; Ricci, G..; Adams, J. J.; Parker, M. W.; Bello, M. L. J. Biol. Chem. 2005, 280, 42172-42180. (e) Pedersen, J. Z.; Maria, F. D.; Turella, P.; Federici, G.; Mattel, M.; Fabrini, R.; Dawood, K. F.; Massimi, M.; Caccuri, A. M.; Ricci, G. J. Biol. Chem. 2007, 282, 6364-6371.
    24. Traylor, T. G.; Sharma, V. S. Biochemistry 1992, 31, 2847-2849.
    25. . Barberger, M. D.; Liu, W.; Ford, E.; Mirandal, K. M.; Switzer, C.; Fukuto, J. M.; Farmer, P. J.; Wink, D. A.; Houk, K. N. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 10958-10963.
    26. Butler, A. R.; Megson, I. L. Chem. Rev. 2002 102, 1155-1165.
    27. Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339-406.
    28. Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159-5167.
    29. Albano, V. G; Araneo, A; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413-422.
    30. (a) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872-5881. (b) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627-2632. (c) Chiang, C.-Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 10867-10874. (d) Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041-6047. (e) Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799-8806. (f) Chen, T.-N.; Lo, F.-C.; Tsai, M.-L.; Shih, K.-N.; Chiang, M.-H.; Lee, G.-H.; Liaw, W.-F. Inorg. Chimi. Acta 2006, 359, 2525-2533. (g) Tsai, M.-L.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6583-6585. (h) Tsai, M.-L.; Hsieh, C.-H.; Liaw, W.-F. Inorg. Chem. 2007, 46, 5110-5117. (i) Huang, H.-W.; Tsou, C.-C.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2008, 47, 2196-2204.(j) Lu, T.-T.; Tsou, C.-C.; Huang , H.-W.; Hsu, I.-J.; Chen, J.-M.; Kuo, T.-S.; W. Y.; Liaw, W.-F. Inorg. Chem. 2008, 47, 6040-6050.
    31. (a) C. J. O’Connor Prog. Inorg. Chem. 1982, 29, 203-283. (b) Bain, G. A.; Berry, J. F. J. Chem. Educ. 2008, 85, 532-536.
    32. Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.
    33. Neese, F. ORCA-an ab Initio, Density functional and Semiempirical Electronic
    Structure Package, Version 2.6.00; University of Bonn: Germany, 2008.
    34. (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. (b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824. (c) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571-2577. (d) Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem.Phys. Lett. 1995, 240, 283-290. (e) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007-1023.
    35. (a) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41-51. (b) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys. 1979, 78, 3396-3402. (c) Vahtras, O.; Almlöf, J. E.; Feyereisen, M. W. Chem. Phys. Lett. 1993, 213, 514-518.
    36. (a) Dirac, P.A.M. Proc. Camb. Phil. Soc., 1930, 26, 376-385. (b) Slater, J.C. The quantum theory of atomsmolecules and solids, Vol. 4, McGraw Hill, New York, 1974. (c) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys, 1980, 58, 1200-1211. (d) Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B., 1988, 37, 785-789.
    37. Szilagyi, R. K.; Metz, M.; Solomon, E. I. J. Phys. Chem. A 2002, 106, 2994-3007.
    38. (a) Klamt, A. J. Chem. Phys. 1995, 99, 2224-2235. (b) Sinnecker, S.; Rajendran, A.; Klamt, A.; Diedenhofen, M.; Neese, F. J. Phys. Chem. A 2006, 110, 2235-2245.
    39. Neese, F. J. Chem. Phys. 2001, 115, 11080-11096.
    40. Luzanov, A. V.; Babich, E. N.; Ivanov, V. V. THEOCHEM 1994, 311, 211-220.
    41. Koseki, S.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. 1992, 96, 10768-10772.
    42. Neese, F. J. Chem. Phys. 2005, 122, 34107-34113.
    43. Hess, B. A.; Marian, C. M.; Wahlgren, U.; Gropen, O. Chem. Phys. Lett. 1996, 251, 365-371.
    44. Neese, F. J. Chem. Phys. 2005, 122, 34107-34113
    45. Molekel, Advanced Interactive 3D-Graphics for Molecular Sciences, available under http:www.cscs.ch/molekel/.
    46. Ghosh, P.; Stobie, K.; Bill, E.; Bothe, E.; Weyhermüller, T.; Ward, M. D.; McCleverty, J. A.; Wieghardt, K. Inorg. Chem. 2007, 46, 522-532.
    47. Kahn, O. Molecular Magnetism; VCH: New York, 1993.
    48. (a) Ghosh, P.; Bill, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. 2003, 125, 1293-1308. (b) Slep, L. D.; Mijovilovich, A.; Meyer-Klaucke, W.; Weyhermüller, T.; Bill, E.; Bothe, E.; Neese, F.; Wieghardt, K. 2003, 125, 15554-15570.
    49. (a) Szilagyi, R. K.; Solomon, E. I. Curr. Opin. Chem. Biol. 2002, 6, 250-258. (b) Solomon, E. I.; Szilagyi, R. K.; DeBeer, G. S.; Basumallick, L. Chem. Rev. 2004, 104, 419-458. (c) Rokhsana, D.; Dooley, D. M.; Szilagyi, R. K. J. Biol. Inorg. Chem. 2008, 13, 371-383.
    50. (a) Remenyi, C.; Kaupp, M. J. Am. Chem. Soc. 2005, 127, 11399-11413. (b) Remenyi, C.; Reviakine, R.; Kaupp, M. J. Phys. Chem. B 2007, 111, 8290-8304.
    51. (a) Mayer, I. Chem. Phys. Lett. 1983, 97, 270-274. (b) Mayer, I. Int. J. Quantum Chem. 1986, 29, 477-483.
    52. (a) In Tables of interatomic Distance and Configuration in Molecules and Ions; Sutton, L. E., Ed.; Chemical Society: London, 1958. (b) Tronc, M.; Huetz, A.; Landau, M.; Pichou, F.; Reinhardt, J. J. Phys, B 1975, 8, 1160-1169. (c) Schenk, G.; Pau, M. Y. M.; Solomon, E. I. J. Am. Chem. Soc. 2003, 126, 505-515
    53. (a) Joshi, H. K.; Cooney, J. J. A.; Inscore, F. E.; Gruhn, N. E.; Lichtenberger, D. L.; Enemark, J. H. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3719-3724. (b) McNaughton, R. L.; Lim, B. S.; Knottenbelt, S. Z.; Holm, R. H.; Kirk, M. L. J. Am. Chem. Soc. 2008, 130, 4628-4636.
    54. (a) Praneeth, V. K. K.; Neese, F.; Lehnert, N. Inorg. Chem. 2005, 44, 2570-2572. (b) Fujisawa, K.; Tateda, A.; Miyashita, Y.; Okamoto, K.-I.; Paulat, F.; Praneeth, V. K. K.; Merkle, A.; Lehnert, N. J. Am. Chem. Soc. 2008, 130, 1205-1213.
    55. Brown, C. D.; Neidig, M. L.; Neibergall, M. B.; Lipscomb, J. D.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 7427-438.
    56. Chen, P.; Fujisawa, K.; Helton, M. E.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 2003, 125, 6394-6408.
    57. Sarangi, R.; York, J. T.; Helton, M. E.; Fujisawa, K.; Karlin, K. D.; Tolman, W. B.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. J. Am. Chem. Soc. 2008, 130, 676-686.
    58. Grapperhaus, C. A.; Kozlowski, P. M.; Kumar, D.; Frye, H. N.; Venna, K. B.; Poturovic, S. Angew. Chem. Int. Ed. 2007, 46, 4085-4088.
    59. (a) Szilagyi, R. K.; Lim, B. S.; Glaser, T.; Holm, R. H.; Hedman, B.; Hodgson, K. O. Solomon, E. I. J. Am. Chem. Soc. 2003, 125, 9158-9169. (b) Grapperhaus, C. A.; Mullins, C. S.; Kozlowski, P. M.; Mashuta, M. S. Inorg. Chem. 2004, 43, 2859-2866.
    60. (a) Vogel, K. M.; Kozlowski, P. M.; Zgierski, M. Z.; Spiro, T. G. J. Am. Chem. Soc. 1999, 121, 9915-9921. (b) Wyllie, G. R.; Schulz, C. E.; Scheidt, W. R. Inorg. Chem. 2004, 42, 5722-5734. (c) Praneeth, V. K. K.; Nather, C.; Peters, G.; Lehnert, N. Inorg. Chem. 2004, 43, 2759-2811.
    61. Tsou, C.-C.; Lu, T.-T.; Liaw, W.-F. J. Am. Chem. Soc. 2007, 129, 12626-12627.
    62. Benhar, M.; Stamler, J. S. Nature Cell Biol. 2005, 7, 645-646.
    63. Chen, Y.-J.; Ku, W.-C.; Feng, L.-T.; Tsai, M.-L.; Hsieh, C.-H.; Hsu, W.-H.; Liaw, W.-F.; Hung, C.-F.; Chen, Y.-J. J. Am. Chem. Soc. 2008, 130, 10929-10938.
    64. Lo, F. –C.; Chen, C. –L.; Lee, C. –M.; Tsai, M. –C.; Lu, T. –T.; Liaw, W. –F.; Yu, S. S. –F. J. Biol. Inorg. Chem. 2008, 13, 961-972.
    65. (a) Humphrey, J.; Chamberlin, R. Chem. Rev. 1997, 97, 2243-2266. (b) Albericio, F. Curr. Opin. Chem. Biol. 2004, 8, 211-221.
    66. Zhang, M.; Zhang, Z.; Blessington, D.; Li, H.; Busch, T. M.; Madrak, V.; Miles, J.; Chance, B.; Glickson, J. D.; Zheng, G. Bioconjugate Chem. 2003, 14, 709-714.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE