簡易檢索 / 詳目顯示

研究生: 張志仲
Chang, Chin-Chung
論文名稱: 銻基相變化記憶材料之開發與探索
Novel Sb-rich Binary Materials Extended for Phase-change Memory
指導教授: 游萃蓉
Yew, Tri-Rung
金重勳
Chin, Tsung-Shung
口試委員: 蔡銘進
何永鈞
謝宗雍
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 116
中文關鍵詞: 相變化記憶體結晶特性鎵銻合金碳銻材料超薄膜合金設計
外文關鍵詞: phase-change material, crystallization behavior, Ga-Sb, C-Sb, ultra-thin film, alloy design
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The purpose of this dissertation is to study Sb-rich binary materials extended for applications in phase-change memory (PCM). Studied characteristics include thin-film properties and memory-cells performance of Ga-Sb alloys and Sb-C materials, and the crystallization behavior of ultra-thin phase-change films. Finally, we propose an alloy design method to reasonably predict the ultra-fast crystallization behavior.
    The Sb-rich, Ga-Sb films (91 to 77 at% Sb) exhibit a high crystallization temperature (Tx, 183 to 261 °C), and high activation energy of crystallization (Ea, 2.3 ~ 8.3 eV), resulting in good thermal stability. The kinetic exponent is smaller than 1.5 at Sb < 86 at%, denoting that the crystallization mechanism is one-dimensional crystal-growth from nuclei. The temperature corresponding to 10-year data-retention (T10Y), is 180 °C for Ga19Sb81, and 148 °C for Ga16Sb84, respectively. A steep resistance drop during crystallization arises mainly from the sharp increase in carrier- concentration with p-type conduction. Ga16Sb84 memory cells demonstrate SET- RESET switching at pulse-width 10 ns and durability >1E5 cycles.
    According to phase-diagrams, carbon and antimony are immiscible and not forming Sb-carbides. However, carbon addition is able to stabilize amorphous Sb phase. Raman and XPS spectra depict formation of C-Sb bonds in Sb-C films, which renders long-range ordering of amorphous Sb to higher crystallization temperatures. Thermal stability of amorphous Sb-C films is precipitously enhanced to show Tx of 256 and 262 °C, Ea of 3.14 and 3.52 eV, at 8 and 13 at% C, respectively. Structure of C-Sb films after full crystallization belongs to Sb phase. The T10Y of 87 at% Sb films is 168 °C. Memory test-cells made of Sb92C8 film show reversible switching at pulse-width 100 ns. It also shows the typical snapback behavior by applying I-sweep mode at the threshold voltage of 1.5 V, and full-SET at 2.1 V (snapback).
    As decreasing film thickness of Ga16Sb84 films from 10 to 3 nm, the exponential increase in crystallization temperature (from 221 to 249 °C), electrical resistance ratio (1E3 to 1E5), and the stabilized Sb(Ga) phase (after annealing at 500 °C in 10nm-film) are attributed to increased specific interface-energies and inhomogeneous interfacial strain at the interfaces. This phenomenon is also observed in ultra-thin Sb films.
    We propose an isothermal-heating transformation curve and a continuous-heating transformation curve, which extrapolate from Arrhenius’ and Kissinger’s plots, to predict the crystallization behavior of Sb-rich binary material under very fast ramp rate. It also provides a useful method to design suitable compositions with good thermal stability, fast crystallization speed, and good data retention ability


    Abstract 摘要 Acknowledgment 致謝 Table of Content List of Tables List of Figures CHAPTER 1 Background and Motivations 1.1Emerging Technologies of Next-generation Memory 1.2 What is the Phase-change Memory (PCM)? 1.2.1 History of PCM 1.2.2 Storage mechanism of PCM 1.2.3 Challenges of PCM nowadays 1.3 Motivations of This Study 1.3.1 Exploring Te-free, Sb-rich binary materials with high performances 1.3.2 Crystallization behaviors of ultra-thin Sb-rich binary PCM films 1.3.3 Feasibility of single element film for PCM CHAPTER 2 Literature Review 2.1 Status of PCM Technology 2.1.1 Te-free, Sb-base binary materials 2.1.2 Device structures 2.2 Physics Properties and Reliability of PCM 2.2.1 Scalability of PCM devices 2.2.2 Thermal conductivity 2.2.3 Data retention ability 2.2.4 Endurance and failure mode 2.3 Kinetic Analysis of Crystallization 2.3.1 Theory of isothermal transformation kinetics 2.3.2 Transformation kinetic at non-isothermal conditions 2.4 Estimating the Effect of Specific Energies upon Crystallization Process 2.4.1 Modeling glass transition temperatures of chalcogenide glasses 2.4.2 The thickness dependent behavior of crystallization temperature CHAPTER 3 Experimental Procedures 3.1 Experimental Procedures of Sb-rich Binary Materials and Devices 3.1.1 Sample preparation and measurements 3.1.2 Procedures of analysis for crystallization kinetics 3.1.3 Structure Analysis 3.2 The Fabrication of Memory-cells and Cell-testing 3.3 Experimental Procedures of Ultra-thin Films Ga16Sb84 and Single-element Sb CHAPTER 4 Sb-rich Ga-Sb Materials for Phase-Change Memory 4.1 The Properties of Sb-rich Ga-Sb Thin Films 4.1.1 Characteristic of Ga-Sb thin-films 4.1.2 The crystallization kinetic of Ga-Sb film 4.1.3 Short summary for thin-film properties of Sb-rich Ga-Sb material 4.2 The Specific Characteristics of Ga16Sb84 and Ga19Sb81 Films 4.3 The Performance of Ga-Sb Memory-cells CHAPTER 5 The Electrical Switching of Carbon Added Sb Films 5.1 The Properties of Sb-C Films 5.1.1 Characteristic of Sb-C thin-films 5.1.2 The crystallization kinetic of Sb-C films 5.1.3 Short summary of Sb-C films properties 5.2 The Characteristics of Sb92C8 and Sb87C13 Films 5.3 The Performance of Sb-C Memory-cells CHAPTER 6 Phase-change Behaviors of Ultra-thin Ga-Sb and Sb-films 6.1 The Behaviors of Ultra-thin Film Ga16Sb84 6.1.1 The crystallization behaviors of ultra-thin A3 film 6.2 Preliminary Evaluation of Single-element Sb as Phase-change Material 6.2.1 The crystallization behaviors of ultra-thin Sb film 6.3 Thickness Dependent Crystallization Temperature of Ultra-thin Films 6.3.1 Zacharias’ Model 6.3.2 Short summary for crystallization behavior of ultra-thin phase-change films CHAPTER 7 Alloy Design of Amorphous Materials for Ultra-fast Crystallization 7.1 Forewords 7.2 Estimating the Amorphization Ability of Phase-change material 7.3 Estimating the Crystallization Speeds from Thin Films – Curves of Isothermal Heating Transformation (IHT) and Continuous Heating Transformation (CHT) 7.4 Empirical Alloy-design Rules for Exploration of Novel Phase-change Material CHAPTER 8 Conclusions and Suggestions of Future Works 8.1 Conclusions of This Study 8.2 Suggestions of Future Works References Appendices Publication List

    [1] S. Lai, "Non-Volatile Memory Technologies: The Quest for Ever Lower Cost," in 2008 IEEE International Electron Devices Meeting, Technical Digest, New York, 2008, pp. 11.
    [2] "Available from: iSuppli Corporation, http://isuppli.com."
    [3] G. E. Moore, "Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965)," in Proceedings of the IEEE, 1998, pp. 82.
    [4] A. L. Lacaita and D. J. Wouters, "Phase-change memories," Physica Status Solidi a-Applications and Materials Science, vol. 205, pp. 2281, Oct. 2008.
    [5] Available from: 2010 International Technology Roadmap for Semiconductor; http://www.itrs.net/home.html.
    [6] A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, "Double-patterning requirements for optical lithography and prospects for optical extension without double patterning," Journal of Micro-Nanolithography Mems and Moems, vol. 8, p. 11, Jan. 2009.
    [7] B. J. Lin, "NGL comparable to 193-nm lithography in cost, footprint, and power consumption," Microelectronic Engineering, vol. 86, pp. 442, Apr. 2009.
    [8] K. Kim and S. Y. Lee, "Memory technology in the future," Microelectronic Engineering, vol. 84, pp. 1976, Sep. 2007.
    [9] K. Prall, "Scaling non-volatile memory below 30nm," in 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop, New York, 2007, pp. 5.
    [10] S. K. Lai, "Flash memories: Successes and challenges," IBM Journal of Research and Development, vol. 52, pp. 529, Jul-Sep. 2008.
    [11] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy, "Overview of candidate device technologies for storage-class memory," IBM Journal of Research and Development, vol. 52, pp. 449, Jul-Sep. 2008.
    [12] S. Lai and T. Lowrey, "OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications," in Electron Devices Meeting, 2001. IEDM Technical Digest.IEEE International, 2001, pp. 36.
    [13] G. Muller, T. Happ, M. Kund, L. Gill Yong, N. Nagel, and R. Sezi, "Status and outlook of emerging nonvolatile memory technologies," in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 2004, pp. 567.
    [14] H. J. Borg, P. W. M. Blom, B. A. J. Jacobs, B. Tieke, A. E. Wilson, I. P. D. Ubbens, G. F. Zhou, and S. P. I. E. Soc Photoopt Instrumentat Engineers, "AgInSbTe materials for high-speed phase change recording," in Joint International Symposium on Optical Memory and Optical Data Storage 1999, Bellingham, 1999, pp. 191.
    [15] L. van Pieterson, M. van Schijndel, J. C. N. Rijpers, and M. Kaiser, "Te-free, Sb-based phase-change materials for high-speed rewritable optical recording," Applied Physics Letters, vol. 83, pp. 1373, Aug. 2003.
    [16] Y. Kageyama, H. Iwasaki, M. Harigaya, and Y. Ide, "Compact disc erasable (CD-E) with Ag-In-Sb-Te phase-change recording material," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 35, pp. 500, Jan. 1996.
    [17] Ovshinsk.Sr, "Reversible electrical switching phenomena in disordered structures," Physical Review Letters, vol. 21, pp. 1450, 1968.
    [18] Available from: SAMSUNG introduces the next feneration of non-volatile memory-PRAM, http://www.samsung.com/us/news/newsPreviewRead.do?news_seq=3329, 2006.
    [19] Available from: Intel Previews Potential Replacement for Flash Memory, http://www.eweek.com/c/a/Desktops-and-Notebooks/Intel-Previews-Potential-Replacement-for-Flash-Memory, 2006.
    [20] Available from: BAE SYSTEMS Develops High-Density, Radiation-Hardened C-RAM Semiconductor, http://www.eis.na.baesystems.com/news_room/new_product_release/c_ram.htm, 2006.
    [21] Available from: A Memory Breakthrough, http://www.technologyreview.com/Infotech/20148/?a=f, 2008.
    [22] Available from: Intel, STMicroelectronics Deliver Industry's First Phase Change Memory Prototypes, http://news.micron.com/releasedetail.cfm?ReleaseID=467789, 2008.
    [23] Available from: Samsung to ship MCP with phase-change, http://www.eetimes.com/electronics-news/4088727/Samsung-to-ship-MCP-with-phase-change, 2010.
    [24] G. F. Zhou, H. J. Borg, J. C. N. Rijpers, M. H. R. Lankhorst, and J. J. L. Horikx, "Crystallisation behaviour of phase change materials: Comparison between nucleation- and growth-dominated crystallisation," in Optical Data Storage 2000, Bellingham, 2000, pp. 108.
    [25] L. van Pieterson, M. H. R. Lankhorst, M. van Schijndel, A. E. T. Kuiper, and J. H. J. Roosen, "Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview," Journal of Applied Physics, vol. 97, p. 7, Apr. 2005.
    [26] A. L. Lacaita, "Phase change memories: State-of-the-art, challenges and perspectives," Solid-State Electronics, vol. 50, pp. 24, Jan. 2006.
    [27] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, "Phase change memory technology," Journal of Vacuum Science & Technology B, vol. 28, pp. 223, Mar. 2010.
    [28] M. H. R. Lankhorst, "Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials," Journal of Non-Crystalline Solids, vol. 297, pp. 210, Feb. 2002.
    [29] S. Raoux, M. Salinga, J. L. Jordan-Sweet, and A. Kellock, "Effect of Al and Cu doping on the crystallization properties of the phase change materials SbTe and GeSb," Journal of Applied Physics, vol. 101, p. 6, Feb. 2007.
    [30] W. K. Njoroge, H. Dieker, and M. Wuttig, "Influence of dielectric capping layers on the crystallization kinetics of Ag5In6Sb59Te30 films," Journal of Applied Physics, vol. 96, pp. 2624, Sep. 2004.
    [31] B. J. Kooi and J. T. M. De Hosson, "On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage," Journal of Applied Physics, vol. 95, pp. 4714, May. 2004.
    [32] R. Pandian, B. J. Kooi, J. T. M. De Hosson, and A. Pauza, "Influence of electron beam exposure on crystallization of phase-change materials," Journal of Applied Physics, vol. 101, p. 6, Mar. 2007.
    [33] H. Y. Cheng, K. F. Kao, C. M. Lee, and T. S. Chin, "Crystallization kinetics of Ga-Sb-Te films for phase change memory," Thin Solid Films, vol. 516, pp. 5513, Jun. 2008.
    [34] T. J. Park, S. Y. Choi, and M. J. Kang, "Phase transition characteristics of Bi/Sn doped Ge2Sb2Te5 thin film for PRAM application," Thin Solid Films, vol. 515, pp. 5049, Apr. 2007.
    [35] K. Wang, D. Wamwangi, S. Ziegler, C. Steimer, and M. Wuttig, "Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5," Journal of Applied Physics, vol. 96, pp. 5557, Nov. 2004.
    [36] K. Wang, C. Steitner, D. Warnwangi, S. Ziegler, M. Wuttig, J. Tomforde, and W. Bensch, "Influence of doping upon the phase change characteristics of Ge2Sb2Te5," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 13, pp. 203, Jan. 2007.
    [37] S. J. Wei, J. Li, X. Wu, P. Zhou, S. Y. Wang, Y. X. Zheng, L. Y. Chen, F. X. Gan, X. Zhang, and G. Li, "Phase change characteristics of aluminum doped Ge2Sb2Te5 films prepared by magnetron sputtering," Optics Express, vol. 15, pp. 10584, Aug. 2007.
    [38] B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G. F. Zhou, and I. P. D. Ubbens, "High data-rate phase-change media for the digital video recording system," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 39, pp. 762, Feb. 2000.
    [39] G. F. Zhou and B. A. J. Jacobs, "High performance media for phase change optical recording," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, pp. 1625, Mar. 1999.
    [40] M. H. R. Lankhorst, B. Ketelaars, and R. A. M. Wolters, "Low-cost and nanoscale non-volatile memory concept for future silicon chips," Nature Materials, vol. 4, pp. 347, Apr. 2005.
    [41] L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, B. Liu, L. Y. Wang, W. L. Liu, and S. L. Feng, "Performance improvement of phase-change memory cell with cup-shaped bottom electrode contact," Applied Physics Letters, vol. 93, p. 3, Sep. 2008.
    [42] F. Xiong, A. D. Liao, D. Estrada, and E. Pop, "Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes," Science, vol. 332, pp. 568, Apr 2011.
    [43] D. H. Kim, F. Merget, M. Laurenzis, P. H. Bolivar, and H. Kurz, "Electrical percolation characteristics of Ge2Sb2Te5 and Sn doped Ge2Sb2Te5 thin films during the amorphous to crystalline phase transition," Journal of Applied Physics, vol. 97, p. 083538, Apr. 2005.
    [44] S. W. Ryu, J. H. Oh, J. H. Lee, B. J. Choi, W. Kim, S. K. Hong, C. S. Hwang, and H. J. Kim, "Phase transformation behaviors of SiO2 doped Ge2Sb2Te5 films for application in phase change random access memory," Applied Physics Letters, vol. 92, p. 142110, Apr. 2008.
    [45] R. M. Shelby and S. Raoux, "Crystallization dynamics of nitrogen-doped Ge2Sb2Te5," Journal of Applied Physics, vol. 105, p. 6, May. 2009.
    [46] D. M. Kang, D. Lee, H. M. Kim, S. W. Nam, M. H. Kwon, and K. B. Kim, "Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy," Applied Physics Letters, vol. 95, p. 011904, Jul. 2009.
    [47] K. F. Kao, C. C. Chang, F. T. Chen, M. J. Tsai, and T. S. Chin, "Antimony alloys for phase-change memory with high thermal stability," Scripta Materialia, vol. 63, pp. 855, Oct. 2010.
    [48] T. Zhang, Z. T. Song, F. Wang, B. Liu, S. L. Feng, and B. Chen, "Te-free SiSb phase change material for high data retention phase change memory application," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 46, pp. L602, Jul. 2007.
    [49] C. M. Lee, W. S. Yen, J. P. Chen, and T. S. Chin, "Performances of phase-change recording disks based on GaSbTe media," IEEE-Trans. Magn., vol. 41, pp. 1022, 2005.
    [50] H. Y. Cheng, K. F. Kao, C. M. Lee, and T. S. Chin, "Characteristics of Ga-Sb-Te films for phase-change memory," IEEE-Trans. Magn., vol. 43, pp. 927, 2007.
    [51] K. Jarvis, R. W. Carpenter, M. Davis, and K. A. Campbell, "An investigation of amorphous Ge2Se3 structure for phase change memory devices using fluctuation electron microscopy," Journal of Applied Physics, vol. 106, p. 5, Oct. 2009.
    [52] G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, "Nanosecond switching in GeTe phase change memory cells," Applied Physics Letters, vol. 95, p. 3, Jul. 2009.
    [53] H. Zhu, J. A. Yin, Y. D. Xia, and Z. G. Liu, "Ga2Te3 phase change material for low-power phase change memory application," Applied Physics Letters, vol. 97, p. 3, Aug. 2011.
    [54] C. Cabral, L. Krusin-Elbaum, J. Bruley, S. Raoux, V. Deline, A. Madan, and T. Pinto, "Direct evidence for abrupt postcrystallization germanium precipitation in thin phase-change films of Sb-15 at.% Ge," Applied Physics Letters, vol. 93, p. 071906, Aug. 2008.
    [55] C. C. Chang, C. Y. Hung, K. F. Kao, M. J. Tsai, T. R. Yew, and T. S. Chin, "Phase transformation in Mg-Sb thin films," Thin Solid Films, vol. 518, pp. 7403, 2010.
    [56] T. J. Park, D. H. Kim, S. J. Park, S. Y. Choi, S. M. Yoon, K. J. Cho, N. Y. Lee, and B. G. Yu, "Phase transition characteristics and nonvolatile memory device performance of ZnxSb100-x alloys," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 46, pp. L543, Jun. 2007.
    [57] F. Rao, Z. T. Song, K. Ren, X. L. Li, L. C. Wu, W. Xi, and B. Liu, "Sn12Sb88 material for phase change memory," Applied Physics Letters, vol. 95, p. 032105, Jul. 2009.
    [58] N. Shimidzu, T. Nagatsuka, Y. Magara, N. Ishii, N. Kinoshita, and K. Sato, "Dynamic observation study of crystallization process in Sb-based phase-change materials," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 46, pp. L385, Apr. 2007.
    [59] L. van Pieterson, M. H. R. Lankhorst, M. van Schijndel, A. E. T. Kuiper, and J. H. J. Roosen, "Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview," Journal of Applied Physics, vol. 97, p. 083520, Apr. 2005.
    [60] D. J. Gravesteijn, "Materials developments for write-once and erasable phase-change optical-recording," Applied Optics, vol. 27, pp. 736, Feb. 1988.
    [61] Y. S. Hsu, Y. C. Her, S. T. Cheng, and S. Y. Tsai, "Electrothermal dynamic in Si-doped Sb70Te30 recording films and two-dimensional thermal simulation of phase-change random access memory," Scripta Materialia, vol. 58, pp. 627, Apr. 2008.
    [62] S. Raoux, C. Cabral, L. Krusin-Elbaum, J. L. Jordan-Sweet, K. Virwani, M. Hitzbleck, M. Salinga, A. Madan, and T. L. Pinto, "Phase transitions in Ge-Sb phase change materials," Journal of Applied Physics, vol. 105, p. 064918, Mar. 2009.
    [63] T. Zhang, Z. T. Song, F. Wang, B. Liu, S. L. Feng, and B. Chen, "Advantages of SiSb phase-change material and its applications in phase-change memory," Applied Physics Letters, vol. 91, p. 222102, Nov. 2007.
    [64] S. L. Cho, J. H. Yi, Y. H. Ha, B. J. Kuh, C. M. Lee, J. H. Park, S. D. Nam, H. Horii, B. O. Cho, K. C. Ryoo, S. O. Park, H. S. Kim, U. I. Chung, J. T. Moon, and B. I. Ryu, "Highly scalable on-axis confined cell structure for high density PRAM beyond 256Mb," in 2005 Symposium on VLSI Technology, Digest of Technical Papers, Tokyo, 2005, pp. 96.
    [65] J. I. Lee, H. Park, S. L. Cho, Y. L. Park, B. J. Bae, J. H. Park, J. S. Park, H. G. An, J. S. Bae, D. H. Ahn, Y. T. Kim, H. Horii, S. A. Song, J. C. Shin, S. O. Park, H. S. Kim, U. I. Chung, J. T. Moon, and B. I. Ryu, "Highly scalable phase change memory with CVD GeSbTe for sub 50 nm generation," in 2007 Symposium on VLSI Technology, Digest of Technical Papers, Tokyo, 2007, pp. 102.
    [66] D. S. Chao, Y. C. Chen, F. Chen, M. J. Chen, P. H. Yen, C. M. Lee, W. S. Chen, C. Lien, M. J. Kao, and M. J. Tsai, "Enhanced thermal efficiency in phase-change memory cell by double GST thermally confined structure," IEEE Electron Device Letters, vol. 28, pp. 871, Oct. 2007.
    [67] M. Breitwisch, T. Nirschl, C. F. Chen, Y. Zhu, M. H. Lee, M. Lamorey, G. W. Burr, E. Joseph, A. Schrott, J. B. Philipp, R. Cheek, T. D. Happ, S. H. Chen, S. Zaidi, P. Flaitz, J. Bruley, R. Dasaka, B. Rajendran, S. Rossnagel, M. Yang, Y. C. Chen, R. Bergmann, H. L. Lung, and C. Lam, "Novel lithography-independent pore phase change memory," in 2007 Symposium on VLSI Technology, Digest of Technical Papers, Tokyo, 2007, pp. 100.
    [68] M. Terao, T. Morikawa, and T. Ohta, "Electrical Phase-Change Memory: Fundamentals and State of the Art," Japanese Journal of Applied Physics, vol. 48, p. 080001, Aug. 2009.
    [69] S. J. Ahn, Y. N. Hwang, Y. J. Song, S. H. Lee, S. Y. Lee, J. H. Park, C. W. Jeong, K. C. Ryoo, J. M. Shin, Y. Fai, J. H. Oh, G. H. Koh, G. T. Jeong, S. H. Choi, Y. H. Son, J. C. Shin, Y. T. Kim, H. S. Jeong, and K. Kim, "Highly reliable 50nm contact cell technology for 256Mb PRAM," in 2005 Symposium on VLSI Technology, Digest of Technical Papers, Tokyo, 2005, pp. 98.
    [70] K. J. Lee, B. H. Cho, W. Y. Cho, S. Kang, B. G. Choi, H. R. Oh, C. S. Lee, H. J. Kim, J. M. Park, Q. Wang, M. H. Park, Y. H. Ro, J. Y. Choi, K. S. Kim, Y. R. Kim, I. C. Shin, K. W. Lim, H. K. Cho, C. H. Choi, W. R. Chung, D. E. Kim, Y. J. Yoon, K. S. Yu, G. T. Jeong, H. S. Jeong, C. K. Kwak, C. H. Kim, and K. Kim, "A 90 nm 1.8 V 512 Mb diode-switch PRAM with 266 MB/s read throughput," in IEEE Journal of Solid-State Circuits, 2008, pp. 150.
    [71] A. Pirovano, F. Pellizzer, I. Tortorelli, A. Rigano, R. Harrigan, M. Magistretti, P. Petruzza, E. Varesi, A. Redaelli, D. Erbetta, T. Marangon, F. Bedeschi, R. Fackenthal, G. Atwood, and R. Bez, "Phase-change memory technology with self-aligned mu Trench cell architecture for 90 nm node and beyond," Solid-State Electronics, vol. 52, pp. 1467, Sep. 2008.
    [72] R. Bez, "Chalcogenide PCM: a Memory Technology for Next Decade," in 2009 IEEE International Electron Devices Meeting, New York, 2009, pp. 79.
    [73] D. H. Im, J. I. Lee, S. L. Cho, H. G. An, D. H. Kim, I. S. Kim, H. Park, D. H. Ahn, H. Horii, S. O. Park, U. I. Chung, and J. T. Moon, "A Unified 7.5nm Dash-Type Confined Cell for High Performance PRAM Device," in IEEE International Electron Devices Meeting 2008, Technical Digest, New York, 2008, pp. 211.
    [74] Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, W. P. Risk, T. D. Happ, G. M. McClelland, M. Breitwisch, A. Schrott, J. B. Philipp, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. F. Chen, E. Joseph, S. Zaidi, B. Yee, H. L. Lung, R. Bergmann, and C. Lam, "Ultra-thin phase-change bridge memory device using GeSb," in 2006 International Electron Devices Meeting, Vols 1 and 2, New York, 2006, pp. 531.
    [75] D. S. Chao, "Investigation of device structures and programming characteristics for high-density and high-performance phase change memory," in Institute of electronics engineering. Ph. D thesis: National Tsing Hua University, 2008
    [76] S. Raoux, J. L. Jordan-Sweet, and A. J. Kellock, "Crystallization properties of ultrathin phase change films," Journal of Applied Physics, vol. 103, p. 7, Jun. 2008.
    [77] X. Q. Wei, L. P. Shi, T. C. Chong, R. Zhao, and H. K. Lee, "Thickness dependent nano-crystallization in Ge2Sb2Te5 films and its effect on devices," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 2211, Apr. 2007.
    [78] S. Raoux, H. Y. Cheng, J. L. Jordan-Sweet, B. Munoz, and M. Hitzbleck, "Influence of interfaces and doping on the crystallization temperature of Ge-Sb," Applied Physics Letters, vol. 94, p. 183114, May. 2009.
    [79] Y. Jung, S. H. Lee, D. K. Ko, and R. Agarwal, "Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect," Journal of the American Chemical Society, vol. 128, pp. 14026, Nov. 2006.
    [80] S. H. Lee, Y. W. Jung, and R. Agarwal, "Size-Dependent Surface-Induced Heterogeneous Nucleation Driven Phase-Change in Ge2Sb2Te5 Nanowires," Nano Letters, vol. 8, pp. 3303, Oct. 2008.
    [81] S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, "Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials," Journal of Applied Physics, vol. 102, p. 8, Nov. 2007.
    [82] M. A. Caldwell, S. Raoux, R. Y. Wang, H. S. P. Wong, and D. J. Milliron, "Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles," Journal of Materials Chemistry, vol. 20, pp. 1285.
    [83] Y. Zhang, H. S. P. Wong, S. Raoux, J. N. Cha, C. T. Rettner, L. E. Krupp, T. Topuria, D. J. Milliron, P. M. Rice, and J. L. Jordan-Sweet, "Phase change nanodot arrays fabricated using a self-assembly diblock copolymer approach," Applied Physics Letters, vol. 91, p. 3, Jul. 2007.
    [84] D. J. Milliron, S. Raoux, R. Shelby, and J. Jordan-Sweet, "Solution-phase deposition and nanopatterning of GeSbSe phase-change materials," Nature Materials, vol. 6, pp. 352, May. 2007.
    [85] Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H. S. P. Wong, "Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis," Journal of Applied Physics, vol. 104, p. 5, Oct. 2008.
    [86] S. Raoux, R. M. Shelby, J. Jordan-Sweet, B. Munoz, M. Salinga, Y. C. Chen, Y. H. Shih, E. K. Lai, and M. H. Lee, "Phase change materials and their application to random access memory technology," Microelectronic Engineering, vol. 85, pp. 2330, Dec. 2008.
    [87] X. H. Sun, B. Yu, G. Ng, T. D. Nguyen, and M. Meyyappan, "III-VI compound semiconductor indium selenide (In2Se3) nanowires: Synthesis and characterization," Applied Physics Letters, vol. 89, p. 3, Dec. 2006.
    [88] X. H. Sun, B. Yu, G. Ng, and M. Meyyappan, "One-dimensional phase-change nanostructure: Germanium telluride nanowire," Journal of Physical Chemistry C, vol. 111, pp. 2421, Feb. 2007.
    [89] H. K. Lyeo, D. G. Cahill, B. S. Lee, J. R. Abelson, M. H. Kwon, K. B. Kim, S. G. Bishop, and B. K. Cheong, "Thermal conductivity of phase-change material Ge2Sb2Te5," Applied Physics Letters, vol. 89, p. 3, Oct. 2006.
    [90] W. P. Risk, C. T. Rettner, and S. Raoux, "Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3 omega method," Applied Physics Letters, vol. 94, p. 3, Mar. 2009.
    [91] J. P. Reifenberg, M. A. Panzer, S. Kim, A. M. Gibby, Y. Zhang, S. Wong, H. S. P. Wong, E. Pop, and K. E. Goodson, "Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films," Applied Physics Letters, vol. 91, p. 3, Sep. 2007.
    [92] D. L. Kencke, I. V. Karpov, B. G. Johnson, S. J. Lee, D. Kau, S. J. Hudgens, J. P. Reifenberg, S. D. Savransky, J. Y. Zhang, M. D. Giles, and G. Spadini, "The role of interfaces in Damascene phase-change memory," in 2007 IEEE International Electron Devices Meeting, Vols 1 and 2, New York, 2007, pp. 323.
    [93] A. Redaelli, D. Ielmini, A. L. Lacaita, F. Pellizzer, A. Pirovano, and R. Bez, "Impact of crystallization statistics on data retention for phase change memories," in IEEE International Electron Devices Meeting 2005, Technical Digest, New York, 2005, pp. 761.
    [94] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, A. L. Lacaita, and R. Bez, "Reliability study of phase-change nonvolatile memories," IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 422, Sep. 2004.
    [95] U. Russo, D. Ielmini, A. Redaelli, and A. L. Lacaita, "Intrinsic data retention in nanoscaled phase-change memories - Part I: Monte Carlo model for crystallization and percolation," IEEE Transactions on Electron Devices, vol. 53, pp. 3032, Dec. 2006.
    [96] A. Redaelli, D. Ielmini, U. Russo, and A. L. Lacaita, "Intrinsic data retention in nanoscaled phase-change memories - Part II: Statistical analysis and prediction of failure time," IEEE Transactions on Electron Devices, vol. 53, pp. 3040, Dec. 2006.
    [97] N. Matsuzaki, K. Kurotsuchi, Y. Matsui, O. Tonomura, N. Yamamoto, Y. Fujisaki, N. Kitai, R. Takemura, K. Osada, S. Hanzawa, H. Moriya, T. Iwasaki, T. Kawahara, N. Takaura, M. Terao, M. Matsuoka, and M. Moniwa, "Oxygen-doped GeSbTe phase-change memory cells featuring 1.5-V/100-mu A standard 0.13-mu m CMOS operations," in 2005 IEEE International Electron Devices Meeting, Technical Digest, New York, 2005, pp. 757.
    [98] K. F. Kao, Y. C. Chu, F. T. Chen, M. J. Tsai, and T. S. Chin, "Phase-Change Memory Devices Operative at 100 degrees C," IEEE Electron Device Letters, vol. 31, pp. 872, Aug. 2010.
    [99] Y. Zhang, J. Feng, and B. C. Cai, "Effects of nitrogen doping on the properties of Ge15Sb85 phase-change thin film," Applied Surface Science, vol. 256, pp. 2223, Jan.
    [100] J. Feng, Z. F. Zhang, Y. Zhang, B. C. Cai, Y. Y. Lin, T. A. Tang, and B. Chen, "Crystallization process and amorphous state stability of Si-Sb-Te films for phase change memory," Journal of Applied Physics, vol. 101, p. 5, Apr. 2007.
    [101] F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistretti, M. Scaravaggi, P. Zuliani, M. Tosi, A. Benvenuti, P. Besana, S. Cadeo, T. Marangon, R. Morandi, R. Piva, A. Spandre, R. Zonca, A. Modelli, E. Varesi, T. Lowrey, A. Lacaita, G. Casagrande, P. Cappelletti, and R. Bez, "Novel mu trench Phase-Change Memory cell for embedded and stand-alone non-volatile memory applications," in 2004 Symposium on Vlsi Technology, Digest of Technical Papers New York, 2004, pp. 18.
    [102] S. Hudgens and B. Johnson, "Overview of phase-change chalcogenide nonvolatile memory technology," MRS Bulletin, vol. 29, pp. 829, Nov. 2004.
    [103] S. Lee, J. Jeong, T. S. Lee, W. M. Kim, and B. Cheong, "A Study on the Failure Mechanism of a Phase-Change Memory in Write/Erase Cycling," IEEE Electron Device Letters, vol. 30, pp. 448, May. 2009.
    [104] J. W. Christian, "The Theory of Transformations in Metals and Alloys. Pt. 1. Equilibrium and General Kinetic Theory ": Pergamon Press, Oxford and New York., 1975, p. 15.
    [105] C. N. R. Rao, "Phase transformations in solids," McGraw-Hill, 1977, p. 82.
    [106] H. Yinnon and D. R. Uhlmann, "Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids " Journal of Non-Crystalline Solids, vol. 54, pp. 253, 1983.
    [107] C. M. Lee, "Structure, crystallization kinetics and optical properties of chalcogenide phase change media based on Ga-Sb-Te," in Department of materials science and engineering. Ph. D thesis: National Tsing Hua University, 2003
    [108] M. Avrami, "Kinetics of phase change I - General theory," Journal of Chemical Physics, vol. 7, pp. 1103, Dec. 1939.
    [109] M. Avrami, "Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III," Journal of Chemical Physics, vol. 9, pp. 177, Feb. 1941.
    [110] W. A. Johnson and R. F. Mehl, "Reaction kinetics in processes of nucleation and growth," Transactions of the American Institute of Mining and Metallurgical Engineers, vol. 135, pp. 416, 1939.
    [111] T. Ozawa, "Kinetics of non-isothermal crystallization," Polymer, vol. 12, pp. 150, 1971.
    [112] H. E. Kissinger, "Reaction kinetics in differential thermal analysis," Analytical Chemistry, vol. 29, pp. 1702, 1957.
    [113] M. Zacharias, J. Blasing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, "Thermal crystallization of amorphous Si/SiO2 superlattices," Applied Physics Letters, vol. 74, pp. 2614, May. 1999.
    [114] M. Zacharias and P. Streitenberger, "Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces," Physical Review B, vol. 62, pp. 8391, Sep. 2000.
    [115] G. V. M. Williams, A. Bittar, and H. J. Trodahl, "Crystallization and diffusion in progressively annealed a-Ge/SiOx superlattices," Journal of Applied Physics, vol. 67, pp. 1874, Feb. 1990.
    [116] H. Homma, I. K. Schuller, W. Sevenhans, and Y. Bruynseraede, "Interfacially initiated crystallization in amorphous-germanium films," Applied Physics Letters, vol. 50, pp. 594, Mar. 1987.
    [117] P. D. Persans, A. Ruppert, and B. Abeles, "Crystallization kinetics of amorphous Si/SiO2 superlattice structures," Journal of Non-Crystalline Solids, vol. 102, pp. 130, Jun. 1988.
    [118] F. Oki, Y. Ogawa, and Y. Fujiki, "Effect of deposited metals on crystallization temperature of amorphous germanium film," Japanese Journal of Applied Physics, vol. 8, pp. 1056, 1969.
    [119] C. C. Chang, C. T. Chao, J. C. Wu, T. R. Yew, M. J. Tsai, and T. S. Chin, "The use of Ga16Sb84 alloy for electronic phase-change memory," Scripta Materialia, vol. 64, pp. 801, May 2011.
    [120] K. Stoev and K. Sakurai, "Theoretical Models in Grazing Incidence X-ray Reflectometry," The Rigaku Journal, vol. 14, pp. 22, 1997.
    [121] "ASM International's Binary Alloy Phase Diagrams, Second Edition."
    [122] D. J. Gravesteijn, H. M. Vantongeren, M. Sens, T. Bertens, and C. J. Vanderpoel, "Phase-change optical-data storage in GaSb," Applied Optics, vol. 26, pp. 4772, Nov. 1987.
    [123] S. W. Nam, C. Kim, M. H. Kwon, H. S. Lee, J. S. Wi, D. Lee, T. Y. Lee, Y. Khang, and K. B. Kim, "Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing," Applied Physics Letters, vol. 92, p. 3, Mar. 2008.
    [124] A. Elfalaky, "Antimony thin-film transport properties and size effect," Applied Physics a-Materials Science & Processing, vol. 60, pp. 87, Jan. 1995.
    [125] K. F. Kao, C. M. Lee, M. J. Chen, M. J. Tsai, and T. S. Chin, "Ga2Te3Sb5-A Candidate for Fast and Ultralong Retention Phase-Change Memory," Advanced Materials, vol. 21, p. 1695, May. 2009.
    [126] X. S. Miao, L. P. Shi, H. K. Lee, J. M. Li, R. Zhao, P. K. Tan, K. G. Lim, H. X. Yang, and T. C. Chong, "Temperature dependence of phase-change random access memory cell," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 3955, May. 2006.
    [127] V. Moroz, Y. S. Oh, D. Pramanik, H. Graoui, and M. A. Foad, "Optimizing boron junctions through point defect and stress engineering using carbon and germanium co-implants," Applied Physics Letters, vol. 87, p. 051908, Aug. 2005.
    [128] E. Napolitani, A. Coati, D. De Salvador, A. Carnera, S. Mirabella, S. Scalese, and F. Priolo, "Complete suppression of the transient enhanced diffusion of B implanted in preamorphized Si by interstitial trapping in a spatially separated C-rich layer," Applied Physics Letters, vol. 79, pp. 4145, Dec. 2001.
    [129] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical Review B, vol. 61, pp. 14095, May. 2000.
    [130] D. G. McCulloch and S. Prawer, "The effect of annealing and implantation temperature on the structure of C ion-beam-irradiated glassy-carbon," Journal of Applied Physics, vol. 78, pp. 3040, Sep. 1995.
    [131] D. G. McCulloch, S. Prawer, and A. Hoffman, "Structural investigation of xenon-ion-beam-irradiated glassy-carbon," Physical Review B, vol. 50, pp. 5905, Sep. 1994.
    [132] H. Nakazawa, T. Mikami, Y. Enta, M. Suemitsu, and M. Mashita, "Structure, chemical bonding and these thermal stabilities of diamond-like carbon (DLC) films by RF magnetron sputtering," Japanese Journal of Applied Physics Part 2-Letters, vol. 42, pp. L676, Jun. 2003.
    [133] J. Choi, H. S. Lee, T. S. Lee, S. Lee, W. M. Kim, D. Kim, and B. K. Cheong, "Investigation on the role of nitrogen in crystallization of Sb-rich phase change materials," Applied Physics Letters, vol. 95, p. 081905, Aug. 2009.
    [134] Available from: Periodic table http://en.wikipedia.org/wiki/Periodic_table.
    [135] H. Satoh, K. Sugawara, and K. Tanaka, "Nanoscale phase changes in crystalline Ge2Sb2Te5 films using scanning probe microscopes," Journal of Applied Physics, vol. 99, p. 7, Jan. 2006.
    [136] S. Meister, D. T. Schoen, M. A. Topinka, A. M. Minor, and Y. Cui, "Void Formation Induced Electrical Switching in Phase-Change Nanowires," Nano Letters, vol. 8, pp. 4562, Dec. 2008.
    [137] J. N. Cha, Y. Zhang, H. S. P. Wong, S. Raoux, C. Rettner, L. Krupp, and V. Deline, "Biomimetic approaches for fabricating high-density nanopatterned arrays," Chemistry of Materials, vol. 19, pp. 839, Feb. 2007.
    [138] Y. C. Chu, P. C. Chang, K. F. Kao, S. C. Chang, and T. S. Chin, "Thermal properties and structure of TeGa2Sb7 thin films for phase-change memory," Thin Solid Films, vol. 518, pp. 7316, Oct. 2010.
    [139] G. Fuchs, M. Treilleux, F. S. Aires, P. Melinon, B. Cabaud, and A. Hoareau, "Crystallization of thin antimony deposits on amorphous carbon," Thin Solid Films, vol. 204, pp. 107, Sep. 1991.
    [140] R. F. Decker, "Alloy design, using second phases," Metallurgical Transactions, vol. 4, pp. 2495, 1973.
    [141] G. H. Johannesson, T. Bligaard, A. V. Ruban, H. L. Skriver, K. W. Jacobsen, and J. K. Norskov, "Combined electronic structure and evolutionary search approach to materials design," Physical Review Letters, vol. 88, p. 5, Jun. 2002.
    [142] P. Caron, "High gamma ' solvus new generation nickel-based superalloys for single crystal turbine blade applications," in Superalloys 2000, Warrendale, 2000, pp. 737.
    [143] J. C. Li, M. Zhao, and Q. Jiang, "Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy," Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 31, pp. 581, Mar. 2000.
    [144] A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys," Acta Materialia, vol. 48, pp. 279, Jan. 2000.
    [145] S. W. Kao, K. C. Yang, S. H. Wang, C. C. Hwang, P. Y. Lee, R. T. Huang, and T. S. Chin, "Predicting the Glass-Forming-Ability of Alloys by Molecular Dynamics Simulation: A Working Example of Ti-Co Bulk Metallic Glasses," Japanese Journal of Applied Physics, vol. 48, p. 5, Jun. 2009.
    [146] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes," Advanced Engineering Materials, vol. 6, pp. 299, May. 2004.
    [147] D. Turnbull and J. C. Fisher, "Rate of nucleation in condensed systems," Journal of Chemical Physics, vol. 17, pp. 71, 1949.
    [148] J. A. Kalb, M. Wuttig, and F. Spaepen, "Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording," Journal of Materials Research, vol. 22, pp. 748, Mar. 2007.
    [149] D. Turnbull, "Under what conditions can a glass be formed," Contemporary Physics, vol. 10, pp. 473, 1969.
    [150] M. Wuttig and N. Yamada, "Phase-change materials for rewriteable data storage," Nature Materials, vol. 6, pp. 824, Nov. 2007.
    [151] D. Wang, Y. Li, B. B. Sun, M. L. Sui, K. Lu, and E. Ma, "Bulk metallic glass formation in the binary Cu-Zr system," Applied Physics Letters, vol. 84, pp. 4029, May. 2004.
    [152] W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, "Fast phase transitions induced by picosecond electrical pulses on phase change memory cells," Applied Physics Letters, vol. 93, p. 043121, Jul. 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE