研究生: |
卓奕均 Cho, I-Chun |
---|---|
論文名稱: |
回散射式離子束細胞照射系統開發 Development of a backscattering charged particle cell irradiation system |
指導教授: |
許靖涵
Hsu, Ching-Han 牛寰 Niu, Huan |
口試委員: |
董傳中
劉裕明 李易展 牛寰 許靖涵 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 離子束 、輻射生物效應 、加速器 |
外文關鍵詞: | Ion beam, Radiobiological effect, Accelerator |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著離子癌症治療技術的發展及長途太空旅行計畫之實現,對於離子射束誘發之細胞輻射生物效應之了解亦日趨重要。本計畫之目標為於國立清華大學加速器實驗室3MV范氏加速器射束線上,發展一套結構簡單、安裝容易以及成本低廉之離子束細胞照射系統。於此系統設計中,我們運用了回散射技術來取代於其他離子束細胞照射系統中常見的 90∘偏轉磁鐵。此項創新使NTHU離子束細胞照射系統得以大幅簡化照射系統之設計同時有效降低安裝系統所需的資金需求。同時於此計畫中,我們藉由氮化矽薄膜於真空封膜及細胞培養皿基底之應用,有效的降低離子束照射過程中細胞樣品內之離子束能量分散。基於系統測試之結果,我們可以證實 NTHU 離子束細胞照射系統可提供一射束直徑為微米或次微米等級的均勻垂直方向離子束以用於細胞或次細胞照射。
As the development of the charged particle cancer treatment and the accomplishment long-term human space travel, the knowledge of the charged particle induced cellular biological effect is getting more and more important. The goal of this work is to develop a simple construction, easy installation and cost-effective charged particle cell irradiation system on the beam line of the 3 MV KN Van de Graaff accelerator in the Accelerator Laboratory of National Tsing Hua University (NTHU). In the system design, we applied the backscattering technique to instead of the usage of 90° bending magnet, which widely used for beam direction bending in other systems. This improvement is largely simplifying the system design as well as massively decreases the budget requirement in system installation. Moreover, the applications of silicon nitride membrane to the vacuum seal membrane and basement of cell culture dish in this project effectively eliminate the particle energy dispersion within a cell target. Based on the system performance test results, we confirm that NTHU charged particle cell irradiation system can provide a uniform vertical charged particle beam to execute the cellular or subcellular charged particle irradiation.
[1] S. Girdhani, R. Sachs, L. Hlatky, Biological effects of proton radiation: what we know and don't know, Radiat Res, 179 (2013) 257-272.
[2] A. Kronenberg, S. Gauny, E. Kwoh, L. Connolly, C. Dan, M. Lasarev, M.S. Turker, Comparative Analysis of Cell Killing and Autosomal Mutation in Mouse Kidney Epithelium Exposed to 1 GeV/nucleon Iron Ions In Vitro or In Situ, Radiation Research, 172 (2009) 550-557.
[3] D. Schardt, T. Elsässer, D. Schulz-Ertner, Heavy-ion tumor therapy: Physical and radiobiological benefits, Reviews of Modern Physics, 82 (2010) 383-425.
[4] S. Gerardi, A comparative review of charged particle microbeam facilities, Radiation Protection Dosimetry, 122 (2006) 285-291.
[5] X. Wang, J. Li, J. Wang, J. Zhang, A. Liu, Z. He, W. Zhang, B. Zhang, C. Shao, L. Shi, Current progress of the biological single-ion microbeam at FUDAN, Radiation and Environmental Biophysics, 50 (2011) 353-364.
[6] M.J. Merchant, J.C. Jeynes, G.W. Grime, V. Palitsin, I.D. Tullis, P.R. Barber, B. Vojnovic, R.P. Webb, K.J. Kirkby, A focused scanning vertical beam for charged particle irradiation of living cells with single counted particles, Radiat Res, 178 (2012) 182-190.
[7] M.J. Merchant, G.W. Grime, K.J. Kirkby, R. Webb, A survey of two-stage focusing systems for nanobeam design, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 260 (2007) 8-14.
[8] M.R. Folkert, Development, characterization, and application of a charged particle microbeam for radiobiological research, Massachusetts Institute of Technology, 2005, pp. 199 leaves.
[9] T.K. Hei, L.K. Ballas, D.J. Brenner, C.R. Geard, Advances in Radiobiological Studies Using a Microbeam, Journal of Radiation Research, 50 (2009) A7-A12.
[10] K. Kobayashi, N. Usami, K. Hieda, K. Takakura, H. Maezawa, T. Hayashi, Development of microbeam irradiation system for radiobiology, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 467-468 (2001) 1329-1332.
[11] L.J. Wu, G. Randers-Pehrson, A. Xu, C.A. Waldren, C.R. Geard, Z. Yu, T.K. Hei, Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells, Proceedings of the National Academy of Sciences of the United States of America, 96 (1999) 4959-4964.
[12] C. Shao, M. Folkard, B.D. Michael, K.M. Prise, Targeted cytoplasmic irradiation induces bystander responses, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004) 13495-13500.
[13] H. Nagasawa, J.B. Little, Induction of sister chromatid exchanges by extremely low doses of alpha-particles, Cancer research, 52 (1992) 6394-6396.
[14] M. Folkard, K.M. Prise, A.G. Michette, B. Vojnovic, The use of radiation microbeams to investigate the bystander effect in cells and tissues, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 580 (2007) 446-450.
[15] E.I. Azzam, S.M. de Toledo, J.B. Little, Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells, Proceedings of the National Academy of Sciences of the United States of America, 98 (2001) 473-478.
[16] C. Mothersill, C.B. Seymour, Cell-cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium, Radiat Res, 149 (1998) 256-262.
[17] N. Autsavapromporn, M. Suzuki, T. Funayama, N. Usami, I. Plante, Y. Yokota, Y. Mutou, H. Ikeda, K. Kobayashi, Y. Kobayashi, Y. Uchihori, T.K. Hei, E.I. Azzam, T. Murakami, Gap Junction Communication and the Propagation of Bystander Effects Induced by Microbeam Irradiation in Human Fibroblast Cultures: The Impact of Radiation Quality, Radiation Research, (2013).
[18] K.T. Butterworth, S.J. McMahon, A.R. Hounsell, J.M. O'Sullivan, K.M. Prise, Bystander Signalling: Exploring Clinical Relevance Through New Approaches and New Models, Clinical Oncology, 25 (2013) 586-592.
[19] E.M. Fielden, P. O'Neill, North Atlantic Treaty Organization. Scientific Affairs Division., The early effects of radiation on DNA, Springer-Verlag, Berlin ; New York, 1991.
[20] S.S. Wallace, B. Painter Robert, Radiation Research Society (U.S.), University of California Los Angeles., Ionizing radiation damage to DNA : molecular aspects : proceedings of a Radiation Research Society-UCLA Symposia Colloquium held at Lake Tahoe, California, January 16-21, 1990, Wiley-Liss, New York, N.Y., 1990.
[21] J.F. Ward, DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability, Progress in nucleic acid research and molecular biology, 35 (1988) 95-125.
[22] P.E. Bryant, Enzymatic restriction of mammalian cell DNA: evidence for double-strand breaks as potentially lethal lesions, International journal of radiation biology and related studies in physics, chemistry, and medicine, 48 (1985) 55-60.
[23] R.T. Abraham, PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways, DNA repair, 3 (2004) 883-887.
[24] L.A. Mathews, S.M. Cabarcas, E.M. Hurt, DNA repair of cancer stem cells, Springer, Dordrecht ; New York, 2013.
[25] P. Jeggo, M. Lobrich, Radiation-induced DNA damage responses, Radiat Prot Dosimetry, 122 (2006) 124-127.
[26] S.P. Lees-Miller, K. Meek, Repair of DNA double strand breaks by non-homologous end joining, Biochimie, 85 (2003) 1161-1173.
[27] M.R. Lieber, The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway, Annual review of biochemistry, 79 (2010) 181-211.
[28] W. Fischle, Y. Wang, C.D. Allis, Histone and chromatin cross-talk, Curr Opin Cell Biol, 15 (2003) 172-183.
[29] G. Legube, D. Trouche, Regulating histone acetyltransferases and deacetylases, EMBO reports, 4 (2003) 944-947.
[30] M. Lobrich, P.A. Jeggo, The impact of a negligent G2/M checkpoint on genomic instability and cancer induction, Nature reviews. Cancer, 7 (2007) 861-869.
[31] P. Widlak, M. Pietrowska, J. Lanuszewska, The role of chromatin proteins in DNA damage recognition and repair, Histochemistry and cell biology, 125 (2006) 119-126.
[32] C.M. Arundel, C.M. Vines, P.J. Tofilon, Chromatin modifications associated with N-methylformamide-induced radiosensitization of clone A cells, Cancer research, 48 (1988) 5669-5673.
[33] M. Folkard, B. Vojnovic, K.J. Hollis, A.G. Bowey, S.J. Watts, G. Schettino, K.M. Prise, B.D. Michael, A charged-particle microbeam: II. A single-particle micro-collimation and detection system, International Journal of Radiation Biology, 72 (1997) 387-395.
[34] B.E. Nelms, R.S. Maser, J.F. MacKay, M.G. Lagally, J.H. Petrini, In situ visualization of DNA double-strand break repair in human fibroblasts, Science, 280 (1998) 590-592.
[35] B.J. Blyth, E.I. Azzam, R.W. Howell, R.J. Ormsby, A.H. Staudacher, P.J. Sykes, An adoptive transfer method to detect low-dose radiation-induced bystander effects in vivo, Radiat Res, 173 (2010) 125-137.
[36] G. Esposito, F. Antonelli, M. Belli, A. Campa, G. Simone, E. Sorrentino, M.A. Tabocchini, An Alpha-Particle Irradiator for Radiobiological Research and its Implementation for Bystander Effect Studies, Radiation Research, 172 (2009) 632-642.
[37] C. Mothersill, C. Seymour, Radiation-induced bystander effects: past history and future directions, Radiat Res, 155 (2001) 759-767.
[38] J.B. Little, Radiation carcinogenesis, Carcinogenesis, 21 (2000) 397-404.
[39] W.D.T.P.A.L.J.M. Bygrave, Accelerator nuclear physics : fundamental experiments with a Van De Graaff accelerator, High Voltage Engineering Corp., Burlington, Mass., 1970.
[40] E. Cottereau, DC accelerators, Technical report, 2001.
[41] H. Goldstein, C.P. Poole, J.L. Safko, Classical mechanics, 3rd ed., Addison Wesley, San Francisco, 2002.
[42] J.B. Marion, S.T. Thornton, Classical dynamics of particles and systems, 4th ed., Saunders College Pub., Fort Worth, 1995.
[43] H. Zhiwen, Y. Zengliang, W. Lijun, H. Suhua, X. An, An optimization control program for the ASIPP microbeam, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 507 (2003) 617-621.
[44] F. Amorini, G. Cardella, A. Pappalardo, M. Piscopo, V. Sipala, P. Finocchiaro, A tunable collimator for precision irradiation with ion microbeams, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266 (2008) 3325-3329.
[45] S. Shrivastava, ASM International., Medical device materials : proceedings from the Materials & Processes for Medical Devices Conference 2003, 8-10 September 2003, Anaheim, California, ASM International, Materials Park, OH, 2004.
[46] H.S. Virk, Physical and chemical response of 70 MeV carbon ion irradiated Kapton-H polymer, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 191 (2002) 739-743.
[47] J. Lawrence, A.B. Patel, J.G. Brisson, The thermal conductivity of Kapton HN between 0.5 and 5 K, Cryogenics, 40 (2000) 203-207.
[48] X.F. Navick, M. Carty, M. Chapellier, G. Chardin, C. Goldbach, R. Granelli, S. Hervé, M. Karolak, G. Nollez, F. Nizery, C. Riccio, P. Starzynski, V. Villar, Fabrication of ultra-low radioactivity detector holders for Edelweiss-II, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 520 (2004) 189-192.
[49] “Mylar” Polyester Film, Journal of the Franklin Institute, 255 (1953) 100.
[50] H.W. Lefevre, R.M.S. Schofield, D.R. Ciarlo, Thin Si3N4 windows for energy loss STIM in air, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 54 (1991) 47-51.
[51] K.C. Lee, The Fabrication of Thin, Freestanding, Single‐Crystal, Semiconductor Membranes, Journal of The Electrochemical Society, 137 (1990) 2556-2574.
[52] D.R. Ciarlo, Silicon Nitride Thin Windows for Biomedical Microdevices, Biomedical Microdevices, 4 (2002) 63-68.
[53] B. Wu, A. Kumar, S. Pamarthy, High aspect ratio silicon etch: A review, Journal of Applied Physics, 108 (2010) 051101-051120.
[54] F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, T. Bourouina, Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures, Microelectronics Journal, 36 (2005) 673-677.
[55] A.M. Hynes, H. Ashraf, J.K. Bhardwaj, J. Hopkins, I. Johnston, J.N. Shepherd, Recent advances in silicon etching for MEMS using the ASE™ process, Sensors and Actuators A: Physical, 74 (1999) 13-17.
[56] C.J.D. Craigie, T. Sheehan, V.N. Johnson, S.L. Burkett, A.J. Moll, W.B. Knowlton, Polymer thickness effects on Bosch etch profiles, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 20 (2002) 2229-2232.
[57] T. Sakata, A. Ueda, Y. Miyahara, Cell adhesion characteristics of chemically modified silicon nitride surfaces, IEEJ Transactions on Electrical and Electronic Engineering, 2 (2007) 295-300.
[58] C.R. Hunt, D. Ramnarain, N. Horikoshi, P. Iyengar, R.K. Pandita, J.W. Shay, T.K. Pandita, Histone modifications and DNA double-strand break repair after exposure to ionizing radiations, Radiat Res, 179 (2013) 383-392.
[59] E.P. Rogakou, D.R. Pilch, A.H. Orr, V.S. Ivanova, W.M. Bonner, DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, The Journal of biological chemistry, 273 (1998) 5858-5868.
[60] E.P. Rogakou, D.R. Pilch, A.H. Orr, V.S. Ivanova, W.M. Bonner, DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139, Journal of Biological Chemistry, 273 (1998) 5858-5868.
[61] O. Fernandez-Capetillo, A. Lee, M. Nussenzweig, A. Nussenzweig, H2AX: the histone guardian of the genome, DNA repair, 3 (2004) 959-967.
[62] A. Kinner, W. Wu, C. Staudt, G. Iliakis, g-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin, Nucleic Acids Research, 36 (2008) 5678-5694.
[63] M. Podhorecka, A. Skladanowski, P. Bozko, H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy, Journal of nucleic acids, 2010 (2010).
[64] A. Celeste, S. Petersen, P.J. Romanienko, O. Fernandez-Capetillo, H.T. Chen, O.A. Sedelnikova, B. Reina-San-Martin, V. Coppola, E. Meffre, M.J. Difilippantonio, C. Redon, D.R. Pilch, A. Olaru, M. Eckhaus, R.D. Camerini-Otero, L. Tessarollo, F. Livak, K. Manova, W.M. Bonner, M.C. Nussenzweig, A. Nussenzweig, Genomic instability in mice lacking histone H2AX, Science, 296 (2002) 922-927.
[65] C.H. Bassing, H. Suh, D.O. Ferguson, K.F. Chua, J. Manis, M. Eckersdorff, M. Gleason, R. Bronson, C. Lee, F.W. Alt, Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors, Cell, 114 (2003) 359-370.
[66] F.A. Mallette, M.F. Gaumont-Leclerc, G. Ferbeyre, The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence, Genes Dev, 21 (2007) 43-48.
[67] K. Rothkamm, S. Horn, gamma-H2AX as protein biomarker for radiation exposure, Annali dell'Istituto superiore di sanita, 45 (2009) 265-271.
[68] R.S. Maser, K.J. Monsen, B.E. Nelms, J.H. Petrini, hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks, Molecular and cellular biology, 17 (1997) 6087-6096.
[69] T.T. Paull, E.P. Rogakou, V. Yamazaki, C.U. Kirchgessner, M. Gellert, W.M. Bonner, A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage, Current Biology, 10 (2000) 886-895.
[70] E.P. Rogakou, C. Boon, C. Redon, W.M. Bonner, Megabase Chromatin Domains Involved in DNA Double-Strand Breaks in Vivo, The Journal of Cell Biology, 146 (1999) 905-916.
[71] T. Kouzarides, Chromatin modifications and their function, Cell, 128 (2007) 693-705.
[72] T. Furuta, H. Takemura, Z.Y. Liao, G.J. Aune, C. Redon, O.A. Sedelnikova, D.R. Pilch, E.P. Rogakou, A. Celeste, H.T. Chen, A. Nussenzweig, M.I. Aladjem, W.M. Bonner, Y. Pommier, Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes, The Journal of biological chemistry, 278 (2003) 20303-20312.
[73] V.A. Rao, A.M. Fan, L. Meng, C.F. Doe, P.S. North, I.D. Hickson, Y. Pommier, Phosphorylation of BLM, dissociation from topoisomerase IIIalpha, and colocalization with gamma-H2AX after topoisomerase I-induced replication damage, Molecular and cellular biology, 25 (2005) 8925-8937.
[74] I.M. Ward, J. Chen, Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress, The Journal of biological chemistry, 276 (2001) 47759-47762.
[75] M. Fragkos, J. Jurvansuu, P. Beard, H2AX Is Required for Cell Cycle Arrest via the p53/p21 Pathway, Mol. Cell. Biol., 29 (2009) 2828-2840.
[76] J.A. Downs, N.F. Lowndes, S.P. Jackson, A role for Saccharomyces cerevisiae histone H2A in DNA repair, Nature, 408 (2000) 1001-1004.
[77] C. Redon, D. Pilch, E. Rogakou, O. Sedelnikova, K. Newrock, W. Bonner, Histone H2A variants H2AX and H2AZ, Current opinion in genetics & development, 12 (2002) 162-169.
[78] J. Bewersdorf, B.T. Bennett, K.L. Knight, H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy, Proceedings of the National Academy of Sciences, 103 (2006) 18137-18142.
[79] M.-F. Weng, S.-Y. Chiang, N.-S. Wang, H. Niu, Fluorescent nanodiamonds for specifically targeted bioimaging: Application to the interaction of transferrin with transferrin receptor, Diamond and Related Materials, 18 (2009) 587-591.
[80] M.D. Abramoff, P.J. Magelhaes, S.J. Ram, Image Processing with ImageJ, Biophotonics International, 11 (2004) 36-42.
[81] B. Schmid, J. Schindelin, A. Cardona, M. Longair, M. Heisenberg, A high-level 3D visualization API for Java and ImageJ, BMC Bioinformatics, 11 (2010) 274.
[82] G. Du, G.A. Drexler, W. Friedland, C. Greubel, V. Hable, R. Krucken, A. Kugler, L. Tonelli, A.A. Friedl, G. Dollinger, Spatial dynamics of DNA damage response protein foci along the ion trajectory of high-LET particles, Radiat Res, 176 (2011) 706-715.
[83] A. Jucha, A. Wegierek-Ciuk, Z. Koza, H. Lisowska, A. Wojcik, M. Wojewodzka, A. Lankoff, FociCounter: A freely available PC programme for quantitative and qualitative analysis of gamma-H2AX foci, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 696 (2010) 16-20.
[84] P.J. Znojek, Investigation of the role of poly(ADP-ribose)polymerase inhibition in topoisomerase I poison-induced cytotoxicity, PhD Thesis, (2012).
[85] B.G. Cartwright, E.K. Shirk, P.B. Price, A nuclear-track-recording polymer of unique sensitivity and resolution, Nuclear Instruments and Methods, 153 (1978) 457-460.
[86] B. Dorschel, D. Hermsdorf, K. Kadner, H. Kuhne, Track Parameters and Etch Rates in Alpha-Irradiated CR-39 Detectors Used for Dosemeter Response Calculation, Radiation Protection Dosimetry, 78 (1998) 205-212.
[87] D. Nikezic, K.N. Yu, Formation and growth of tracks in nuclear track materials, Materials Science and Engineering: R: Reports, 46 (2004) 51-123.
[88] J.F. Ziegler, SRIM-2010,The Stopping and Range of Ions in Matter, (2010).
[89] K. Roy, S. Kodama, K. Suzuki, M. Watanabe, Delayed cell death, giant cell formation and chromosome instability induced by X-irradiation in human embryo cells, J Radiat Res, 40 (1999) 311-322.
[90] R. Roots, W. Holley, A. Chatterjee, M. Irizarry, G. Kraft, The formation of strand breaks in DNA after high-LET irradiation: a comparison of data from in vitro and cellular systems, Int J Radiat Biol, 58 (1990) 55-69.
[91] P. Kundrat, R.D. Stewart, On the biophysical interpretation of lethal DNA lesions induced by ionising radiation, Radiat Prot Dosimetry, 122 (2006) 169-172.
[92] C. Hurwitz, L.J. Tolmach, Time lapse cinemicrographic studies of x-irradiated HeLa S3 cells. I. Cell progression and cell disintegration, Biophysical journal, 9 (1969) 607-633.
[93] J.E. Biaglow, The effects of ionizing radiation on mammalian cells, Journal of Chemical Education, 58 (1981) 144.
[94] C. Hurwitz, L.J. Tolmach, Time-lapse cinemicrographic studies of x-irradiated HeLa S3 cells. II. Cell fusion, Biophysical journal, 9 (1969) 1131-1143.
[95] H. Sasaki, Lethal Sectoring, Genomic Instability, and Delayed Division Delay in HeLa S3 Cells Surviving Alpha- or X-irradiation, Journal of Radiation Research, 45 (2004) 497-508.
[96] T. Konishi, K. Amemiya, T. Natsume, A. Takeyasu, N. Yasuda, Y. Furusawa, K. Hieda, A New Method for the Simultaneous Detection of Mammalian Cells and Ion Tracks on a Surface of CR-39, Journal of Radiation Research, 48 (2007) 255-261.
[97] N. Finnberg, C. Wambi, J.H. Ware, A.R. Kennedy, W.S. El-Deiry, Gamma-radiation (GR) triggers a unique gene expression profile associated with cell death compared to proton radiation (PR) in mice in vivo, Cancer biology & therapy, 7 (2008) 2023-2033.
[98] A. Gerelchuluun, Z. Hong, L. Sun, K. Suzuki, T. Terunuma, K. Yasuoka, T. Sakae, T. Moritake, K. Tsuboi, Induction of in situ DNA double-strand breaks and apoptosis by 200 MeV protons and 10 MV X-rays in human tumour cell lines, Int J Radiat Biol, 87 (2011) 57-70.
[99] L.M. Green, D.K. Murray, A.M. Bant, G. Kazarians, M.F. Moyers, G.A. Nelson, D.T. Tran, Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution, Radiat Res, 155 (2001) 32-42.
[100] C.O. Nordling, A new theory on cancer-inducing mechanism, British journal of cancer, 7 (1953) 68-72.
[101] R. Ashkenazi, S.N. Gentry, T.L. Jackson, Pathways to tumorigenesis--modeling mutation acquisition in stem cells and their progeny, Neoplasia (New York, N.Y.), 10 (2008) 1170-1182.
[102] K. Ishizawa, Z.A. Rasheed, R. Karisch, Q. Wang, J. Kowalski, E. Susky, K. Pereira, C. Karamboulas, N. Moghal, N.V. Rajeshkumar, M. Hidalgo, M. Tsao, L. Ailles, T.K. Waddell, A. Maitra, B.G. Neel, W. Matsui, Tumor-initiating cells are rare in many human tumors, Cell stem cell, 7 (2010) 279-282.
[103] G.H. Nguyen, M.M. Murph, J.Y. Chang, Cancer Stem Cell Radioresistance and Enrichment: Where Frontline Radiation Therapy May Fail in Lung and Esophageal Cancers, Cancers, 3 (2011) 1232-1252.
[104] M.F. Clarke, J.E. Dick, P.B. Dirks, C.J. Eaves, C.H.M. Jamieson, D.L. Jones, J. Visvader, I.L. Weissman, G.M. Wahl, Cancer Stem Cells—Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells, Cancer research, 66 (2006) 9339-9344.
[105] I. Dimov, D. Tasic-Dimov, I. Conic, V. Stefanovic, Glioblastoma multiforme stem cells, TheScientificWorldJournal, 11 (2011) 930-958.
[106] S.K. Singh, I.D. Clarke, M. Terasaki, V.E. Bonn, C. Hawkins, J. Squire, P.B. Dirks, Identification of a cancer stem cell in human brain tumors, Cancer research, 63 (2003) 5821-5828.
[107] S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano, P.B. Dirks, Identification of human brain tumour initiating cells, Nature, 432 (2004) 396-401.
[108] N. Sanai, A. Alvarez-Buylla, M.S. Berger, Neural Stem Cells and the Origin of Gliomas, New England Journal of Medicine, 353 (2005) 811-822.
[109] R. Galli, E. Binda, U. Orfanelli, B. Cipelletti, A. Gritti, S. De Vitis, R. Fiocco, C. Foroni, F. Dimeco, A. Vescovi, Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma, Cancer research, 64 (2004) 7011-7021.
[110] S. Bao, Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B. Hjelmeland, M.W. Dewhirst, D.D. Bigner, J.N. Rich, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, 444 (2006) 756-760.
[111] A. Eramo, L. Ricci-Vitiani, A. Zeuner, R. Pallini, F. Lotti, G. Sette, E. Pilozzi, L.M. Larocca, C. Peschle, R. De Maria, Chemotherapy resistance of glioblastoma stem cells, Cell Death Differ, 13 (2006) 1238-1241.
[112] V. Turinetto, L. Orlando, Y. Sanchez-Ripoll, B. Kumpfmueller, M.P. Storm, P. Porcedda, V. Minieri, S. Saviozzi, L. Accomasso, E. Cibrario Rocchietti, K. Moorwood, P. Circosta, A. Cignetti, M.J. Welham, C. Giachino, High basal gammaH2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells, Stem cells (Dayton, Ohio), 30 (2012) 1414-1423.
[113] J.P. Banáth, C.A. Bañuelos, D. Klokov, S.M. MacPhail, P.M. Lansdorp, P.L. Olive, Explanation for excessive DNA single-strand breaks and endogenous repair foci in pluripotent mouse embryonic stem cells, Experimental Cell Research, 315 (2009) 1505-1520.
[114] I.A. Chuykin, M.S. Lianguzova, T.V. Pospelova, V.A. Pospelov, Activation of DNA damage response signaling in mouse embryonic stem cells, Cell cycle, 7 (2008) 2922-2928.
[115] S.H. Bigner, P.A. Humphrey, A.J. Wong, B. Vogelstein, J. Mark, H.S. Friedman, D.D. Bigner, Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts, Cancer research, 50 (1990) 8017-8022.
[116] P.A. Humphrey, A.J. Wong, B. Vogelstein, M.R. Zalutsky, G.N. Fuller, G.E. Archer, H.S. Friedman, M.M. Kwatra, S.H. Bigner, D.D. Bigner, Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma, Proceedings of the National Academy of Sciences of the United States of America, 87 (1990) 4207-4211.
[117] N. Sugawa, A.J. Ekstrand, C.D. James, V.P. Collins, Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas, Proceedings of the National Academy of Sciences of the United States of America, 87 (1990) 8602-8606.
[118] R. Nishikawa, X.D. Ji, R.C. Harmon, C.S. Lazar, G.N. Gill, W.K. Cavenee, H.J. Huang, A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity, Proceedings of the National Academy of Sciences of the United States of America, 91 (1994) 7727-7731.
[119] S.K. Batra, S. Castelino-Prabhu, C.J. Wikstrand, X. Zhu, P.A. Humphrey, H.S. Friedman, D.D. Bigner, Epidermal growth factor ligand-independent, unregulated, cell-transforming potential of a naturally occurring human mutant EGFRvIII gene, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research, 6 (1995) 1251-1259.
[120] D.K. Moscatello, M. Holgado-Madruga, D.R. Emlet, R.B. Montgomery, A.J. Wong, Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor, The Journal of biological chemistry, 273 (1998) 200-206.
[121] A.C. Wera, K. Donato, C. Michiels, Y. Jongen, S. Lucas, Preliminary results of proton beam characterization for a facility of broad beam in vitro cell irradiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266 (2008) 2122-2124.
[122] L.R. Doolittle, Algorithms for the rapid simulation of Rutherford backscattering spectra, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 9 (1985) 344-351.