簡易檢索 / 詳目顯示

研究生: 陳柏儒
Chen, Po-Ju
論文名稱: 光學膜乾燥製程中物性預測與調控
Optical and Mechanical Properties of Cast-Dried Polyimide Films
指導教授: 劉大佼
Liu, Ta-Jo
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 155
中文關鍵詞: 雙折射捲曲應力乾燥可溶性聚亞醯胺建模操作視窗
外文關鍵詞: birefringence, curl, stress, drying, soluble polyimide, modeling, operating window
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為探討高分子塗膜在乾燥時所引起的一些物理性質變化,以外平面雙折射(out-of-plane birefringence, OPBR)與塗膜捲曲(curling)為主,此兩現象導因於乾燥過程中產生的殘餘應力。塗膜捲曲是塗膜與基材向塗膜面(coated side)或非塗膜面(uncoated side)彎曲的現象。一般而言乾燥時溶劑揮發使塗膜體積收縮產生殘餘張應力(residual tensile stress),因此塗膜向塗膜面彎曲。微觀而言,此張應力同時也會誘導高分子鏈平躺於塗膜平面的排列,此微結構使塗膜在垂直塗膜平面與水平塗膜平面方向的折射率不同,也就是產生外平面雙折射。
    為解決此問題,本研究建立包含理論與實驗之工具,分析乾燥製程操作變數對OPBR與捲曲之影響,以提供乾燥製程最好的準則。實驗部分,選擇溶劑型的可溶性聚亞醯胺高分子(polyimide, PI)進行分析;聚亞醯胺高分子在光電產業上有著極大的運用,但乾燥製程對其物理性質變化的影響卻尚未被研究。本研究之實驗探討乾燥製程對PI高分子之應力、雙折射與塗膜捲曲等物理性質的影響,同時觀察乾燥製程的操作視窗(operating window),找出製程條件控制物性的範圍與極限。
    理論方面,要計算乾燥應力,必須求解質量平衡方程式(mass balance equation)、能量平衡方程式(energy balance equation)、固化後之黏彈力學方程式(viscoelastic equations);而從光彈效應(stress-optical rule)與捲曲模型(curling model)則可計算應力造成雙折射與塗膜捲曲之變化量。本研究建立了一維模型與簡單模型來計算乾燥應力及其對於雙折射與捲曲影響之預測。一維模型之統御方程式為完整的質量平衡、能量平衡以及黏彈力學方程式;以有限元素法進行離散後以Fortran程式撰寫進行計算。在三個假設下可簡化一維模型之統御方程式變成簡單模型,首先假設應力起始前塗膜內擴散速率遠大於揮發速率,因此塗膜內濃度保持均勻;再假設固化後膜厚不改變;第三假設塗膜於應力起始後為一均勻黏彈體,其形變遵守一簡單的黏彈模型。
    本研究發現,一維模型可準確預測乾燥應力及其對雙折射與捲曲之影響,但一維模型計算時間較長,也無法提供物理意義與解釋。簡單模型由於方程式簡單,可解釋乾燥應力影響物性之物理機制,且所需計算時間短;但其計算準確度較差,尤其不適於預測快速乾燥極限下之結果。本研究亦進行線上(on-line)之實驗與理論比較,證明本研究所建立之理論不僅適用於試驗性(pilot)之實驗,亦可用於工業界之生產線上。乾燥實驗中也找出了乾燥製程能形成均勻液膜的乾燥操作視窗,此視窗限制了乾燥製程對雙折射與捲曲現象操控之極限,過高的乾燥溫度與濕膜厚度皆會使塗膜產生乾燥缺陷。


    The objective of this research is to investigate some physical properties arising during the drying of polyimide film, namely birefringence and curl, both are caused by drying-induced stress. Curl is an out of plane displacement toward coated side or uncoated side at the edges of substrate. In general, coated film tends to shrink during drying and this shrinkage is inhibited by adherence to the substrate, which causes the build-up of a residual tensile stress and forces substrate to curl toward coated side. In microscopic viewpoint, this tensile stress also makes polymeric chains orientation parallel to the coating plane, which result in the difference between the refractive indices parallel and perpendicular to the coating plane, and that is the out-of-plane birefringence (OPBR).
    In this paper, the drying-stress induced birefringence and curl of soluble polyimide films was experimentally and theoretically investigated. The experimental results of OPBR and curl have been examined, and an operating window which is a region for stable and uniform film formation was also determined experimentally.
    In order to calculate the drying stress, the mass balance equation, the energy balance equation and the viscoelastic equation have to be solved, and then birefringence and curl can be evaluated by the stress-optical rule and the curling model. A one-dimensional (1D) model and a simple model have been developed to predict the drying stress. All governing equations of the mass balance, the energy balance and the viscoelastics are concluded in the 1D model. The computer aided solutions by the finite element method (FEM) were found. Three assumptions that would lead the simplification of the 1D model to reduce it to a simple model. The first assumption is that at the early stage of drying process, there is no concentration gradient inside the film. The second is that the variation of film thickness is negligible after stress built-up. The third is that after stress built-up, the coating material is a homogeneous viscoelastic material and deforms following a modified Maxwell model consisting of a spring connected to two parallel elements: a dashpot and a stick/slip. Because of the simplified governing equations, the simple model can be solved by the Excel spreadsheet.
    The predictions of 1D model are in reasonable agreement with experimental results especially for the substrates with high surface energy such as glass, but the model itself is rather complicated. On the other hand, although simple model does not predict the results as accurate as 1D model, it thus provides some physical insight on the formation mechanism of drying stress and is much easier to apply. One just has to be careful with two cases, i.e., rapid drying and large film thickness variation after built-up concentration.
    On-line experiments were also carried out and the results were compared with the theoretical models, it was found that the theoretical predictions are also reasonably accurate. An operating window which is a region for stable and uniform film formation was also determined experimentally, which also put the limit of drying-controlled OPBR and curl.

    謝誌 I 摘要 III Abstract VI 目錄 IX 圖目錄 XII 表目錄 XVI 第一章、緒論 1 1-1 光學膜製程 3 1-2 乾燥應力、捲曲與雙折射 7 1-2-1 乾燥與殘餘應力 7 1-2-2 捲曲與應力測量 11 1-2-3 乾燥應力雙折射 13 1-3 文獻回顧 17 1-3-1 捲曲之文獻回顧 17 1-3-2 乾燥應力之文獻回顧 22 1-3-2 乾燥雙折射之文獻回顧 24 1-4 研究動機與研究方向 28 第二章、理論模型 32 2.1 一維模型之統御方程式 33 2.1.1 質量平衡 33 2.1.2 能量平衡 36 2.1.3 黏彈塑性力學 37 2.2 一維模型之數值計算 44 2.2.1 無因次統御方程式 44 2.2.2 有限元素法數值計算 47 2.2.3 數值計算流程 50 2.3 簡單模型 53 2.4 光彈模型與塗膜捲曲模型 57 2.5 乾燥固化參數計算 60 第三章、實驗方法 70 3-1 材料與儀器設備 72 3-1-1 材料 72 3-1-2 儀器與設備 74 3-2 物理性質的量測方法 79 3-3實驗設計與步驟 85 3-3-1 製程參數 85 3-3-2 乾燥操作視窗的判斷 87 3-3-3 實驗設計與步驟 90 第四章、乾燥雙折射 93 4-1 乾燥操作視窗 95 4-1-1 乾燥操作視窗之定性分析 95 4-1-2 乾燥操作視窗之定量分析 99 4-2 乾燥雙折射 102 4-2-1 乾燥雙折射之定性分析 102 4-2-2 乾燥雙折射之定量分析 105 4-3 浮動式烘箱線上實驗 117 第五章、塗膜捲曲 123 5-1 聚亞醯胺高分子之塗膜捲曲 125 第六章、結論與未來展望 131 附錄A、一維模型測試 138 附錄B、乾燥初期之簡單模型 142 附錄C、符號說明 145 附錄D、參考文獻 150 附錄E、個人資料 155

    [1] Stoney GG. “The Tension of Metallic Films Deposited by Electrolysis”, R. Soc. London, Ser. A, 82, 172-175 (1909).
    [2] Timoshenko SP, Gere JM. “Theory of Elastic Stability”, McGraw-Hill, New York, 1961.
    [3] Penwell RC, Chow TS. “Minimizing Curl Induced Upon Drying Layered Solvent Coated Films”, Polym. Eng. Sci., 25, 367 (1985).
    [4] Croll SG. “The Origin of Residual Internal Stress in Solvent-Cast Thermoplastic Coatings”, J. Appl. Polym. Sci., 23, 847-858 (1990).
    [5] Hasatani M, Itaya Y, Hayakawa K. “Fundamental Study on Shrinkage of Formed Clay During Drying. Viscoelastic Strain-Stress and Heat/Moisture Transfer”, Drying Technology, 10, 1013 (1992).
    [6] Hasatani M, Itaya Y, Muroie K, Taniguchi S. “Contraction Characteristics of Molded Ceramics During Drying”, Drying Technology, 11, 815 (1993).
    [7] Itaya Y, Hasatani M, Mabuchi S. “Deformation Behavior of Ceramic Slabs by Nonuniform Drying”, Drying Technology, 10, 1013 (1992).
    [8] Perera DY, Eynde DV. “Solvent Influence on The Development of Internal Stress in A Thermoplastic Coating”, J. Coating Tech., 55, 699 (1983).
    [9] Perera DY, Eynde DV. “Effect of organic solvents on internal stress in latex coatings”, J. Coating Tech., 57, 718 (1984).
    [10] Payne JA, McCormick AV, Francis LF. “In situ stress measurement apparatus for liquid applied coatings”, Rev. Sci. Instrum., 68, 4564 (1997).
    [11] Payne JA. “Stress Evolution in Solidifying Coatings”, Ph.D. Thesis. Univ. Minnesota (1998).
    [12] Payne JA, McCormick AV, Francis LF. “A Study of Stress Development in Aqueous Gelatin Coatings”, J. Appl. Polym. Sci., 73, 553-561 (1999).
    [13] Park KS, Kwon YD, Kim D. “Theoretical and Experimental Analysis on The Thickness-Controlled Residual Stress during Drying of Solvent-Absorbed Polymer Films”, Polym. J., 33, 503-508 (2001).
    [14] Tam SY. “Stress Effects in Drying Coatings”, Ph.D. Thesis. Univ. Minnesota (1997).
    [15] Lei H. “Flow, Deformation, Stress and Failure in Solidifying Coatings”, Ph.D. Thesis. Univ. Minnesota (1999).
    [16] Lei H, Payne JA, McCormick AV, Francis LF, Gerberich WW, Scriven LE. “Stress Development in Drying Coatings”, J. Appl. Polym. Sci., 81, 1000 (2001).
    [17] Lei H, Francis LF, Gerberich WW, Scriven LE. “Stress development in drying fibers and spheres”, J. Appl. Polym. Sci., 90, 3934 (2003).
    [18] Narukawa Y, Scriven LE. “Drying, Stress Development and Deformation in Solvent-Cast Film”, 12th ISCST Conference, 86 (2004).
    [19] Christodoulou KN, Lightfoot EJ, Powell RW. “Stress Induced Defect Formation during Drying of Polymer Films”, AIChE, 44, 1484 (1998).
    [20] Sosnowski TP, Weber HP. “Thin Birefringent Polymer Films for Integrated Optics”, Appl. Phys. Lett., 21, 310-311 (1972).
    [21] Prest WM, Luca DJ. “The Origin of the Optical Anisotropy of Solvent Cast Polymeric Films”, J. Appl. Phys., 50, 6067-6071 (1979).
    [22] Prest WM, Luca DJ. “The Alignment of Polymers During the Solvent-Coating Process”, J. Appl. Phys., 51, 5170-5174 (1980).
    [23] Cohen Y, Reich S. “Ordering Phenomena in Thin Polystyrene Films”, J. Polym. Sci.: Polym. Sci. Ed., 19, 599-608 (1981).
    [24] Machell JS, Greener J, Contestable BA. “Optical Properties of Solvent-Cast Polymer Films”, Macromolecules, 23, 186-194 (1990).
    [25] Greener J, Lei H, Elman J, Chen J. “Optical Properties of Solvent-Cast Polarizer Films for Liquid Crystal Display: A Viscoelastic Modeling Framework”, SID Digest, 756-759 (2005).
    [26] Bird RB, Steward WE, Lightfoot EN. “Transport Phenomena” (2nd edition), New York, John Wiley (2001).
    [27] Yapel RA. “The Physical Model of Drying of Coated Films”, M.S. Thesis, University of Minnesota, Minneapolis, USA, 1988.
    [28] Alsoy S, Duda JL. “Drying of Solvent Coated Polymer Films”, Drying Technology, 16, 15-44 (1998).
    [29] Rivlin RS, Saunders DW. “Large Elastic Deformations of Isotropic Materials, VII, Experiments on the Deformation of Rubber”, Phi. T. Roy. A, 243, 251-288 (1951).
    [30] Zienkiewwicz OC, Taylor RI. “The Finite Element Method”, Vol 1, McGraw-Hill, London, 1989.
    [31] Taylor C, Hughes TG. “Finite Element Programming the Navier-Stokes Equations”, Pineridge Press Ltd. Swansea, 1981.
    [32] Crank J. “The Mathematics of Diffusion”, 2nd ed. Oxford, New York, (1975).
    [33] Smallwood IM. “Handbook of organic solvent properties”, Arnold, London, 1996
    [34] Cohen ED, Lightfoot EJ, Christodoulou KN. “Important Issues in Drying of Thin Films: An Industrial Engineers Perspective Part2: Models”, Industrial Coating Research, 4, 47-72 (1998).
    [35] Vrentas JS, Duda JL. “Diffusion in Polymer-Solvent Systems I. Re-examination of the Free-Volume Teory”, J. Polym. Sci., Part B: Polym. Phs., 15, 403-416 (1977).
    [36] Vrentas JS, Duda JL. “Diffusion in Polymer-Solvent Systems II. A Predictive Theory for the Dependence of Diffusion Coefficients on Temperature, Concentration, and Molecular Weight”, J. Polym. Sci., Part B: Polym. Phs., 15, 403-416 (1977).
    [37] Hong SU. “Prediction of Polymer/Solvent Diffusion Behavior Using Free-Volume Theory”, Ind. Eng. Chem., Res., 34, 2536-2544 (1995).
    [38] Park KS, Kim D. “Determination of Diffusion and Mass Tansfer Coefficients during Drying of Solvent-Absorbed Polymer Films”, Polym. J., 32, 415-421 (2000).
    [39] Bondi A. “Physical Properties of Molecular Crystals, Liquids and Glass”, Wiley, New York, 1968.
    [40] Dullien F.A.L. “Predictive Equations for Self-Diffustion in Liquids: a Different Approach”, AIChE J., 18, 62-70 (1972).
    [41] Jiang WH, Han R. “Prediction of Solvent-Diffusion Coefficient in Polymer by a modified Free-Volume Theory”, J. Appl. Polym., 77, 428-436 (1999).
    [42] Bristow GM, Watson WF. “Cohesive Energy Densities of Polymers: Part 1.-Cohesive Energy Densities of Rubbers by Swelling Measurements”, Trans. Faraday. Soc, 54, 1731-1741 (1958).
    [43] Van Krevelen DW, Hoftyzer PJ. “Properties of Polymers”, Amsterdam Oxford, New York, 1976
    [44] Cohen ED, Lightfoot EJ, Gutoff EB. “A Primer on Forming Coatings”, Chem. Eng. Progress, 30, 30-36 (1990).
    [45] 黃瀞瑤,高分子塗膜在乾燥過程中捲曲行為之探討,清華大學化學工程研究所碩士論文,2009。
    [46] Waggoner RA, Blum FD. “Solvent Diffusion and Drying of Coatings”, J. Coating Tech., 61, 51-56(1989).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE