研究生: |
張恩豪 Chang, En-Hao |
---|---|
論文名稱: |
開發新型可轉換式近紅外光之螢光探針及蛋白激活化學探針 Development of New Fluorescent Switchable Near-Infrared Dyes and Protein-Activated Chemical Probes |
指導教授: |
陳貴通
Tan, Kui-Thong |
口試委員: |
林俊成
Lin, Chun-Cheng 王宗興 Wang, Tsung-Shing |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 224 |
中文關鍵詞: | 螢光探針 、部分花青染料 、細胞顯影 、體內成像 、香豆素 、蛋白激活 |
外文關鍵詞: | fluorescent probes, merocyanine, cell image, in vivo, coumarin, protein-activated |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螢光探針能夠快速且靈敏的偵測目標分析物,因此在化學與生物科學領域中迅速發展且已成為醫學診斷方面中不可或缺的工具。在本論文的第一部分,我們開發出了一種新型可轉換式近紅外光之部分花青染料,並且應用於生物成像。大多數的螢光分子都是通過延伸π-共軛系統使其整體波長紅移;而我們設計出的部分花青染料則是以不尋常的S-cis構型穩定存在而導致其波長紅移進入近紅外光區。此外,在探針上修飾蛋白質配體,可讓探針與蛋白質結合時表現出顯著的螢光增益,使我們進行細胞顯影時可以免去清洗的步驟。我們期望這項研究能夠帶給相關領域一個新的近紅外光螢光染料設計策略。
在本論文的第二部分,我們發展出了一種新型的蛋白質偵測策略。藉由引入鄰-二氟苯基和優化香豆素衍生物的穩定性,我們合成出Coumarin-Carbamate-SA做為探針用以偵測蛋白質。在水溶液中五個小時後還能保持一樣的螢光背景,說明了探針具有足夠的穩定度。透過增加驅動力的模式,使得蛋白質上的親和基成功地和探針上的酯基進行加成消去反應並且斷鍵,釋放出螢光基團,分析螢光訊號的改變以實現偵測。由於此探針具有快速偵測和高選擇性的優點,我們相信此策略非常適合用於蛋白質檢測,同時期望可以廣泛應用於相關領域。
Fluorescent probes are a flourishing field of research in chemical and biological science and they have emerged as an important tool in medical diagnosis owing to their rapid response and high sensitivity to target analytes.
In the first part of our thesis, we introduce a new fluorescent switchable near-infrared merocyanine dye and demonstrate its imaging applications. Compared with the classical bathochromic shift approach which relies on the extension of the π-conjugation system, our novel approach of the bathochromic shift is based on an unusual S-cis diene conformer. By incorporating a protein specific ligand to the dye, the probes exhibited dramatic fluorescence enhancement upon binding with its target protein which enabled no-wash and site-specific imaging of target proteins in vitro and in vivo. We believe that our unconventional approach can lead to new strategies for the design of near-IR dyes.
In the second part, we developed a new strategy for the detection of target proteins. By incorporating an ortho-difluorophenyl group and optimizing the stability of the coumarin derivatives, we have successfully identified Coumarin- Carbamate-SA as the optimal probe. It was sufficiently stable in aqueous buffer, achieving low fluorescent background for at least 5 hours. Yet, the probe is reactive enough for protein detection through the cleavage of the ester bond next to the difluorophenyl group which leads to an excellent fluorescence enhancement upon releasing the fluorophore. Due to the rapid response and high selectivity, we believe this strategy can be particularly useful for protein detection and imaging in living cells.
[1] Fernández-Suárez, M.; Ting, A. Y., Nat. Rev. Mol. Cell Biol. 2008, 9, 929.
[2] Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., Chem. Rev. 2010, 110, 2620-2640.
[3] van Dam, G. M.; Themelis, G.; Crane, L. M. A.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; de Jong, J. S.; Arts, H. J. G.; van der Zee, A. G. J.; Bart, J.; Low, P. S.; Ntziachristos, V., Nat. Med. 2011, 17, 1315.
[4] Chen, H.; Dong, B.; Tang, Y.; Lin, W., Acc. Chem. Res. 2017, 50, 1410-1422.
[5] Zipfel, W. R.; Williams, R. M.; Christie, R.; Nikitin, A. Y.; Hyman, B. T.; Webb, W. W., Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 7075-7080.
[6] Venter, J. C.; Adams, M. D.; Myers, E. W.; Li, P. W.; Mural, R. J.; Sutton, G. G.; Smith, H. O.; Yandell, M.; Evans, C. A.; Holt, R. A.; Gocayne, J. D.; Amanatides, P.; Ballew, R. M.; Huson, D. H.; Wortman, J. R., et al., Science 2001, 291, 1304-1351.
[7] Lacerda, S.; Morfin, J. F.; Geraldes, C. F. G. C.; Toth, E., Dalton Trans. 2017, 46, 14461-14474.
[8] He, X.-P.; Zang, Y.; James, T. D.; Li, J.; Chen, G.-R., Chem. Soc. Rev. 2015, 44, 4239-4248.
[9] Miller, Y.; Ma, B.; Nussinov, R., Chem. Rev. 2010, 110, 4820-4838.
[10] Mitchell, J. D.; Borasio, G. D., Lancet 2007, 369, 2031-2041.
[11] Schulz-Schaeffer, W. J., Acta Neuropathol. 2010, 120, 131-143.
[12] Jankovic, J., J. Neurol. Neurosurg. Psychiatry 2008, 79, 368-376.
[13] Alwine, J. C.; Kemp, D. J.; Stark, G. R., Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 5350-5354.
[14] Schmidt, S. D.; Mazzella, M. J.; Nixon, R. A.; Mathews, P. M., Methods Mol. Biol. 2012, 849, 507-527.
[15] Cleveland, D. W.; Fischer, S. G.; Kirschner, M. W.; Laemmli, U. K., J. Biol. Chem. 1977, 252, 1102-6.
[16] Gibson, B. W.; Biemann, K., Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 1956-1960.
[17] Aebersold, R.; Goodlett, D. R., Chem. Rev. 2001, 101, 269-296.
[18] Waggoner, A., Curr. Opin. Chem. Biol. 2006, 10, 62-66.
[19] Goddard, J.-P.; Reymond, J.-L., Curr. Opin. Biotechnol. 2004, 15, 314-322.
[20] Petitjean, A.; Khoury, R. G.; Kyritsakas, N.; Lehn, J.-M., J. Am. Chem. Soc. 2004, 126, 6637-6647.
[21] Pedersen, C. J., J. Am. Chem. Soc. 1967, 89, 2495-2496.
[22] Cram, D. J.; Cram, J. M., Science 1974, 183, 803-809.
[23] Lehn, J.-M., Science 1985, 227, 849-856.
[24] Lehn, J. M.; Sonveaux, E.; Willard, A. K., J. Am. Chem. Soc. 1978, 100, 4914-4916.
[25] Hou, T.-C.; Wu, Y.-Y.; Chiang, P.-Y.; Tan, K.-T., Chem. Sci. 2015, 6, 4643-4649.
[26] Sahoo, H., J. Photochem. Photobiol., C 2011, 12, 20-30.
[27] Matsuo, K.; Nishikawa, Y.; Masuda, M.; Hamachi, I., Angew. Chem. 2017, 130, 667-670.
[28] Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A. D.; Brédas, J. L.; Lögdlund, M.; Salaneck, W. R., Nature 1999, 397, 121.
[29] Jenekhe, S. A.; Osaheni, J. A., Science 1994, 265, 765-768.
[30] Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Chem. Soc. Rev. 2011, 40, 5361-5388.
[31] Hong, Y.; Feng, C.; Yu, Y.; Liu, J.; Lam, J. W. Y.; Luo, K. Q.; Tang, B. Z., Anal. Chem. 2010, 82, 7035-7043.
[32] Simon, A.; Gariepy, J.; Chironi, G.; Megnien, J.-L.; Levenson, J., J. Hypertens. 2002, 20, 159-169.
[33] Simons, K.; Toomre, D., Nat. Rev. Mol. Cell Biol. 2000, 1, 31.
[34] Lowell, B. B.; Spiegelman, B. M., Nature 2000, 404, 652.
[35] Wilson, W. R.; Hay, M. P., Nat. Rev. Cancer 2011, 11, 393.
[36] Varadi, A.; Rutter, G. A., Endocrinology 2004, 145, 4540-4549.
[37] Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S., Chem. Soc. Rev. 2014, 43, 4563-4601.
[38] Cohen, B. E.; McAnaney, T. B.; Park, E. S.; Jan, Y. N.; Boxer, S. G.; Jan, L. Y., Science 2002, 296, 1700-1703.
[39] Yu‐De, Z.; Po‐Yi, C.; Chia‐Wen, W.; Kui‐Thong, T., Angew. Chem. Int. Ed. 2013, 52, 8124-8128.
[40] Hong, Y.-R.; Lam, C. H.; Tan, K.-T., Bioconjugate Chem. 2017, 28, 2895-2902.
[41] Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S., Org. Lett. 2008, 10, 213-216.
[42] Loving, G. S.; Sainlos, M.; Imperiali, B., Trends Biotechnol. 2010, 28, 73-83.
[43] Liu, T.-K.; Hsieh, P.-Y.; Zhuang, Y.-D.; Hsia, C.-Y.; Huang, C.-L.; Lai, H.-P.; Lin, H.-S.; Chen, I. C.; Hsu, H.-Y.; Tan, K.-T., ACS Chem. Biol. 2014, 9, 2359-2365.
[44] Rumble, C.; Rich, K.; He, G.; Maroncelli, M., J. Phys. Chem. A 2012, 116, 10786-10792.
[45] Allen, B. D.; Benniston, A. C.; Harriman, A.; Rostron, S. A.; Yu, C., Phys. Chem. Chem. Phys. 2005, 7, 3035-3040.
[46] Benniston, A. C.; Copley, G., Phys. Chem. Chem. Phys. 2009, 11, 4124-4131.
[47] Rotkiewicz, K.; Grellmann, K. H.; Grabowski, Z. R., Chem. Phys. Lett. 1973, 19, 315-318.
[48] Haidekker, M. A.; Theodorakis, E. A., J. Biol. Eng. 2010, 4, 11.
[49] Drummen, G., Molecules 2012, 17, 14067.
[50] Sasaki, S.; Drummen, G. P. C.; Konishi, G.-i., J. Mater. Chem. C 2016, 4, 2731-2743.
[51] Gatzogiannis, E.; Chen, Z.; Wei, L.; Wombacher, R.; Kao, Y.-T.; Yefremov, G.; Cornish, V. W.; Min, W., Chem. Commun. 2012, 48, 8694-8696.
[52] Levitt, J. A.; Kuimova, M. K.; Yahioglu, G.; Chung, P.-H.; Suhling, K.; Phillips, D., J. Phys. Chem. C 2009, 113, 11634-11642.
[53] Lopez-Duarte, I.; Vu, T. T.; Izquierdo, M. A.; Bull, J. A.; Kuimova, M. K., Chem. Commun. 2014, 50, 5282-5284.
[54] Wu, Y.-Y.; Yu, W.-T.; Hou, T.-C.; Liu, T.-K.; Huang, C.-L.; Chen, I. C.; Tan, K.-T., Chem. Commun. 2014, 50, 11507-11510.
[55] Han, J.; Burgess, K., Chem. Rev. 2010, 110, 2709-2728.
[56] Gottlieb, R. A.; Nordberg, J.; Skowronski, E.; Babior, B. M., Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 654-658.
[57] A., W. O., Traffic 2003, 4, 57-64.
[58] Walker, N. M.; Simpson, J. E.; Levitt, R. C.; Boyle, K. T.; Clarke, L. L., J. Pharmacol. Exp. Ther. 2006, 317, 275-283.
[59] Chin, E. R.; Allen, D. G., J. Physiol. 2004, 512, 831-840.
[60] Simon, S.; Roy, D.; Schindler, M., Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 1128-1132.
[61] Casey, J. R.; Grinstein, S.; Orlowski, J., Nat. Rev. Mol. Cell Biol. 2009, 11, 50.
[62] Iwashita, H.; Torii, S.; Nagahora, N.; Ishiyama, M.; Shioji, K.; Sasamoto, K.; Shimizu, S.; Okuma, K., ACS Chem. Biol. 2017, 12, 2546-2551.
[63] Liu, Y.; Zhou, J.; Wang, L.; Hu, X.; Liu, X.; Liu, M.; Cao, Z.; Shangguan, D.; Tan, W., J. Am. Chem. Soc. 2016, 138, 12368-12374.
[64] Monti, M.; Brandt, L.; Ikomi‐Kumm, J.; Olsson, H., Scand. J. Haematol. 1986, 36, 353-357.
[65] Karnebogen, M.; Singer, D.; Kallerhoff, M.; Ringert, R. H., Thermochim. Acta 1993, 229, 147-155.
[66] Arai, S.; Suzuki, M.; Park, S.-J.; Yoo, J. S.; Wang, L.; Kang, N.-Y.; Ha, H.-H.; Chang, Y.-T., Chem. Commun. 2015, 51, 8044-8047.
[67] Brown, J. M.; Wilson, W. R., Nat. Rev. Cancer 2004, 4, 437.
[68] Garvey, J. F.; Taylor, C. T.; McNicholas, W. T., Eur. Respir. J. 2009, 33, 1195-1205.
[69] Wen, P.; Satoru, T.; Yuji, T.; Satoshi, M.; Fengyi, L.; Shodai, T.; Yu, K.; Toru, K.; Tasuku, U.; Takuya, T.; Toru, N.; Masanobu, U.; Keiji, M.; Tetsuo, N.; Kenjiro, H., Angew. Chem. Int. Ed. 2013, 52, 13028-13032.
[70] Takahashi, S.; Piao, W.; Matsumura, Y.; Komatsu, T.; Ueno, T.; Terai, T.; Kamachi, T.; Kohno, M.; Nagano, T.; Hanaoka, K., J. Am. Chem. Soc. 2012, 134, 19588-19591.
[71] Kobayashi, T.; Urano, Y.; Kamiya, M.; Ueno, T.; Kojima, H.; Nagano, T., J. Am. Chem. Soc. 2007, 129, 6696-6697.
[72] Belov Vladimir , N.; Wurm Christian , A.; Boyarskiy Vadim , P.; Jakobs, S.; Hell Stefan , W., Angew. Chem. Int. Ed. 2010, 49, 3520-3523.
[73] Jun, M. E.; Roy, B.; Ahn, K. H., Chem. Commun. 2011, 47, 7583-7601.
[74] Kamiya, M.; Asanuma, D.; Kuranaga, E.; Takeishi, A.; Sakabe, M.; Miura, M.; Nagano, T.; Urano, Y., J. Am. Chem. Soc. 2011, 133, 12960-12963.
[75] Lavis, L. D.; Raines, R. T., ACS Chem. Biol. 2008, 3, 142-155.
[76] Jiang, N.; Fan, J.; Xu, F.; Peng, X.; Mu, H.; Wang, J.; Xiong, X., Angew. Chem. Int. Ed. 2015, 54, 2510-2514.
[77] MacNevin, C. J.; Gremyachinskiy, D.; Hsu, C.-W.; Li, L.; Rougie, M.; Davis, T. T.; Hahn, K. M., Bioconjugate Chem. 2013, 24, 215-223.
[78] Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A., J. Comput. Chem. 2001, 22, 976-984.
[79] Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V., J. Chem. Phys. 2006, 124, 094107.
[80] Mallory, F. B.; Baker, M. B., J. Org. Chem. 1984, 49, 1323-1326.
[81] Asao, N.; Sato, K.; Menggenbateer; Yamamoto, Y., J. Org. Chem. 2005, 70, 3682-3685.
[82] Ernst, L.; Stolle, R., Magn. Reson. Chem. 1989, 27, 796-797.
[83] Woodward, R. B., J. Am. Chem. Soc. 1941, 63, 1123-1126.
[84] Fieser, L. F.; Fieser, M.; Rajagopalan, S., J. Org. Chem. 1948, 13, 800-806.
[85] Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A., Introduction to spectroscopy. Cengage Learning: 2008.
[86] Liu, R. S.; Asato, A. E., Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 259-263.
[87] Liu, R. S.; Hammond, G. S., Photochem. Photobiol. Sci. 2003, 2, 835-844.
[88] Dugave, C.; Demange, L., Chem. Rev. 2003, 103, 2475-2532.
[89] Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K., Nat. Biotechnol. 2002, 21, 86.
[90] Maurel, D.; Comps-Agrar, L.; Brock, C.; Rives, M.-L.; Bourrier, E.; Ayoub, M. A.; Bazin, H.; Tinel, N.; Durroux, T.; Prézeau, L.; Trinquet, E.; Pin, J.-P., Nat. Methods 2008, 5, 561.
[91] Abo, M.; Minakami, R.; Miyano, K.; Kamiya, M.; Nagano, T.; Urano, Y.; Sumimoto, H., Anal. Chem. 2014, 86, 5983-5990.
[92] Bojkowska, K.; de Sio, F. S.; Barde, I.; Offner, S.; Verp, S.; Heinis, C.; Johnsson, K.; Trono, D., Chem. Biol. 2011, 18, 805-815.
[93] Gong, H.; Kovar, J. L.; Baker, B.; Zhang, A.; Cheung, L.; Draney, D. R.; Corrêa Jr, I. R.; Xu, M.-Q.; Olive, D. M., PloS one 2012, 7, e34003.
[94] Kim, S.; Tachikawa, T.; Fujitsuka, M.; Majima, T., J. Am. Chem. Soc. 2014, 136, 11707-11715.
[95] Chan, J.; Dodani, S. C.; Chang, C. J., Nat. Chem. 2012, 4, 973.
[96] Kubota, R.; Hamachi, I., Chem. Soc. Rev. 2015, 44, 4454-4471.
[97] Qian, X.; Xu, Z., Chem. Soc. Rev. 2015, 44, 4487-4493.
[98] Kim Yun, K.; Lee, J. S.; Bi, X.; Ha, H. H.; Ng Shin, H.; Ahn, Y. h.; Lee, J. J.; Wagner Bridget, K.; Clemons Paul, A.; Chang, Y. T., Angew. Chem. Int. Ed. 2011, 50, 2761-2763.
[99] Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B., Chem. Rev. 2000, 100, 1973-2012.
[100] Ahn, Y.-H.; Lee, J.-S.; Chang, Y.-T., J. Comb. Chem. 2008, 10, 376-380.
[101] Reisch, A.; Klymchenko Andrey, S., Small 2016, 12, 1968-1992.
[102] Søndergaard, R. V.; Christensen, N. M.; Henriksen, J. R.; Kumar, E. K. P.; Almdal, K.; Andresen, T. L., Chem. Rev. 2015, 115, 8344-8378.
[103] Christianson, D. W.; Fierke, C. A., Acc. Chem. Res. 1996, 29, 331-339.
[104] Avvaru, B. S.; Kim, C. U.; Sippel, K. H.; Gruner, S. M.; Agbandje-McKenna, M.; Silverman, D. N.; McKenna, R., Biochemistry 2010, 49, 249-251.
[105] Supuran, C. T., Nat. Rev. Drug Discov. 2008, 7, 168.
[106] Fisher, Z.; Boone, C. D.; Biswas, S. M.; Venkatakrishnan, B.; Aggarwal, M.; Tu, C.; Agbandje-McKenna, M.; Silverman, D.; McKenna, R., Protein Eng. Des. Sel. 2012, 25, 347-355.
[107] Di Fiore, A.; Maresca, A.; Supuran, C. T.; De Simone, G., Chem. Commun. 2012, 48, 8838-8840.
[108] Wu, T.-W.; Lee, F.-H.; Gao, R.-C.; Chew, C. Y.; Tan, K.-T., Anal. Chem. 2016, 88, 7873-7877.
[109] Takaoka, Y.; Nishikawa, Y.; Hashimoto, Y.; Sasaki, K.; Hamachi, I., Chem. Sci. 2015, 6, 3217-3224.
[110] 陳相榮, 可轉換式近紅外光之部分花青染料—蛋白質標記特定胞器與細胞顯影, 國立清華大學碩士論文, 2017.